THE EMBEDDING PROPERTY FOR SORTED PROFINITE GROUPS

被引:0
|
作者
Lee, Junguk [1 ]
机构
[1] Changwon Natl Univ, Dept Math, Chang Won 51140, South Korea
关键词
sorted profinite groups; sorted complete system; sorted embedding property; co-sorted embedding property; sorted embedding cover;
D O I
10.1017/jsl.2023.16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the embedding property in the category of sorted profinite groups. We introduce a notion of the sorted embedding property (SEP), analogous to the embedding property for profinite groups. We show that any sorted profinite group has a universal SEP-cover. Our proof gives an alternative proof for the existence of a universal embedding cover of a profinite group. Also our proof works for any full subcategory of the sorted profinite groups, which is closed under taking finite quotients, fibre products, and inverse limits. We also show that any sorted profinite group having SEP has a sorted complete system whose theory is ?-categorical and ?-stable under the assumption that the set of sorts is countable.
引用
收藏
页码:1005 / 1037
页数:33
相关论文
共 50 条
  • [21] Small profinite groups
    Newelski, L
    JOURNAL OF SYMBOLIC LOGIC, 2001, 66 (02) : 859 - 872
  • [22] Profinite quantum groups
    Ng, CK
    MATHEMATISCHE NACHRICHTEN, 2003, 254 : 197 - 217
  • [23] LOCALIZATION OF PROFINITE GROUPS
    HERFORT, W
    RIBENBOIM, P
    ARCHIV DER MATHEMATIK, 1984, 42 (01) : 1 - 15
  • [24] On quasifree profinite groups
    Ribes, Luis
    Stevenson, Katherine
    Zalesskii, Pavel
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (09) : 2669 - 2676
  • [25] COHOMOLOGIES AND PROFINITE GROUPS
    SZALAJKA, WS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A85 - A85
  • [26] Profinite Cappitt groups
    Porto, A. L. P.
    QUAESTIONES MATHEMATICAE, 2021, 44 (03) : 307 - 311
  • [27] On small profinite groups
    Helbig, Patrick
    JOURNAL OF GROUP THEORY, 2017, 20 (05) : 987 - 997
  • [28] ON PROFINITE POLYADIC GROUPS
    Shahryari, M.
    Rostami, M.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 814 - 823
  • [29] Endomorphisms of profinite groups
    Reid, Colin D.
    GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (02) : 553 - 564
  • [30] Profinite Groups and Semigroups
    Almeida, Jorge
    Costa, Alfredo
    Kyriakoglou, Revekka
    Perrin, Dominique
    PROFINITE SEMIGROUPS AND SYMBOLIC DYNAMICS, 2020, 2274 : 25 - 85