Structure Diversity-Induced Anchor Graph Fusion for Multi-View Clustering

被引:7
|
作者
Lu, Xun [1 ]
Feng, Songhe [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing 100044, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Multi-view clustering; anchor graph; graph fusion; connectivity; constraint; structure diversity;
D O I
10.1145/3534931
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The anchor graph structure has been widely used to speed up large-scale multi-view clustering and exhibited promising performance. How to effectively integrate the anchor graphs on multiple views to achieve enhanced clustering performance still remains a challenging task. Existing fusing strategies ignore the structure diversity among anchor graphs and restrict the anchor generation to be same on different views, which degenerates the representation ability of corresponding fused consensus graph. To overcome these drawbacks, we propose a novel structural fusion framework to integrate the multi-view anchor graphs for clustering. Different from traditional integration strategies, we merge the anchors and edges of all the view-specific anchor graphs into a single graph for the structural optimal graph learning. Benefiting from the structural fusion strategy, the anchor generation of each view is not forced to be same, which greatly improves the representation capability of the target structural optimal graph, since the anchors of each view capture the diverse structure of different views. By leveraging the potential structural consistency among each anchor graph, a connectivity constraint is imposed on the target graph to indicate clusters directly without any postprocessing such as k-means in classical spectral clustering. Substantial experiments on real-world datasets are conducted to verify the superiority of the proposed method, as compared with the state-of-the-arts over the clustering performance and time expenditure.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Incomplete Multi-View Clustering Algorithm with Adaptive Graph Fusion
    Huang, Zhanpeng
    Wu, Jiekang
    Yi, Faling
    [J]. Computer Engineering and Applications, 2023, 59 (09) : 176 - 181
  • [22] Refining Graph Structure for Incomplete Multi-View Clustering
    Li, Xiang-Long
    Chen, Man-Sheng
    Wang, Chang-Dong
    Lai, Jian-Huang
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2300 - 2313
  • [23] Graph Structure Aware Contrastive Multi-View Clustering
    Chen, Rui
    Tang, Yongqiang
    Cai, Xiangrui
    Yuan, Xiaojie
    Feng, Wenlong
    Zhang, Wensheng
    [J]. IEEE TRANSACTIONS ON BIG DATA, 2024, 10 (03) : 260 - 274
  • [24] Tensorized Anchor Graph Learning for Large-scale Multi-view Clustering
    Dai, Jian
    Ren, Zhenwen
    Luo, Yunzhi
    Song, Hong
    Yang, Jian
    [J]. COGNITIVE COMPUTATION, 2023, 15 (05) : 1581 - 1592
  • [25] Tensorized Anchor Graph Learning for Large-scale Multi-view Clustering
    Jian Dai
    Zhenwen Ren
    Yunzhi Luo
    Hong Song
    Jian Yang
    [J]. Cognitive Computation, 2023, 15 : 1581 - 1592
  • [26] Discrete correntropy-based multi-view anchor-graph clustering
    Yang, Ben
    Wu, Jinghan
    Zhang, Xuetao
    Zheng, Xinhu
    Nie, Feiping
    Chen, Badong
    [J]. INFORMATION FUSION, 2024, 103
  • [27] Semi-Supervised Multi-View Clustering with Weighted Anchor Graph Embedding
    Wang, Senhong
    Cao, Jiangzhong
    Lei, Fangyuan
    Dai, Qingyun
    Liang, Shangsong
    Ling, Bingo Wing-Kuen
    [J]. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [28] Priori Anchor Labels Supervised Scalable Multi-View Bipartite Graph Clustering
    You, Jiali
    Ren, Zhenwen
    You, Xiaojian
    Li, Haoran
    Yao, Yuancheng
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 9, 2023, : 10972 - 10979
  • [29] Efficient correntropy-based multi-view clustering with anchor graph embedding
    Yang, Ben
    Zhang, Xuetao
    Chen, Badong
    Nie, Feiping
    Lin, Zhiping
    Nan, Zhixiong
    [J]. NEURAL NETWORKS, 2022, 146 : 290 - 302
  • [30] Cross-view Graph Matching Guided Anchor Alignment for Incomplete Multi-view Clustering
    Li, Xingfeng
    Sun, Yinghui
    Sun, Quansen
    Ren, Zhenwen
    Sun, Yuan
    [J]. INFORMATION FUSION, 2023, 100