Covalent organic framework@graphene composite as a high-performance electrode for Li-ion batteries

被引:2
|
作者
Xu, Yi [1 ]
Sun, Yi [1 ]
Fang, Haoyan [1 ]
Wang, Jinlong [1 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Dept Chem Engn & Technol, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Covalent organic framework; graphene; density functional theory; molecular dynamics; Li-ion batteries; ENERGY-STORAGE; CARBON NANOTUBES; CONDUCTIVITY;
D O I
10.1080/08927022.2023.2189980
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As emerging candidates for the electrode materials of next-generation rechargeable batteries, covalent organic frameworks (COFs) have large charge capacity, wide ion diffusion paths and low potential range. However, organic electrodes generally suffer from low conductivity. Graphene (G) possesses great strength, flexibility and has been widely used as a type of conductive additive due to its remarkable electrical conductivity. Here we propose a composite constructed by a certain kind of COF and a pristine G sheet (COF@G), the characteristics of which have been systematically investigated based on density functional theory calculations and molecular dynamics simulations. Results indicate that the COF@G (COF/G, COF/COF/G, COF/G/G) can exhibit good electronic conductivity and ultrahigh capability, which can be used as high-performance electrodes of Li-ion batteries. For Li-ions (Li+), they can provide strong adsorption sites and smooth diffusion channels leading to high specific capacity and good rate capability. More importantly, the coupling interaction of the COF and the G can greatly inhibit the structure changes of the COF during the lithiation process, and the volumetric change rate is less than 23%. Among them, the COF/G is the most suitable for Li+ adsorption and corresponding theoretical capacity can reach 353 mAh/g.
引用
收藏
页码:729 / 741
页数:13
相关论文
共 50 条
  • [21] Silicon-Reduced Graphene Oxide Composite as Negative Electrode of Li-Ion Batteries
    Korchun, A., V
    Evshchik, E. Yu
    Baskakov, S. A.
    Yagodin, V. V.
    Kuznetsov, M., V
    Bushkova, O., V
    Bukun, N. G.
    Dobrovolsky, Yu A.
    RUSSIAN JOURNAL OF APPLIED CHEMISTRY, 2020, 93 (12) : 1940 - 1946
  • [22] Silicon-Reduced Graphene Oxide Composite as Negative Electrode of Li-Ion Batteries
    A. V. Korchun
    E. Yu. Evshchik
    S. A. Baskakov
    V. V. Yagodin
    M. V. Kuznetsov
    O. V. Bushkova
    N. G. Bukun
    Yu. A. Dobrovolsky
    Russian Journal of Applied Chemistry, 2020, 93 : 1940 - 1946
  • [23] Graphene based magnetite carbon nanofiber composites as anodes for high-performance Li-ion batteries
    Rosaiah, Pitcheri
    Niyitanga, Theophile
    Sambasivam, Sangaraju
    Kim, Haekyoung
    NEW JOURNAL OF CHEMISTRY, 2022, 47 (01) : 482 - 490
  • [24] Crucial contact interface of Si@graphene anodes for high-performance Li-ion batteries
    Ma, Zhihua
    Wang, Liujie
    Wang, Dandan
    Huang, Ruohan
    Wang, Cunjing
    Chen, Gairong
    Miao, Changqing
    Peng, Yingjie
    Li, Aoqi
    Miao, Yu
    APPLIED SURFACE SCIENCE, 2022, 603
  • [25] SnOx/graphene anode material with multiple oxidation states for high-performance Li-ion batteries
    Zhang, Wenlan
    Zheng, Maojun
    Li, Fanggang
    You, Yuxiu
    Jiang, Dongkai
    Yuan, Hao
    Ma, Li
    Shen, Wenzhong
    NANOTECHNOLOGY, 2021, 32 (19)
  • [26] Self-assembly of Si entrapped graphene architecture for high-performance Li-ion batteries
    Park, Sang-Hoon
    Kim, Hyun-Kyung
    Ahn, Dong-Joon
    Lee, Sang-Ick
    Roh, Kwang Chul
    Kim, Kwang-Bum
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 34 : 117 - 120
  • [27] β12-Borophene/Graphene Heterostructure as a High-Performance Anode Material for Li-Ion Batteries
    Faramarzi, Sorour
    Movlarooy, Tayebeh
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (20) : 25966 - 25976
  • [28] Hollow reduced graphene oxide microspheres as a high-performance anode material for Li-ion batteries
    Mei, Riguo
    Song, Xiaorui
    Hu, Yan
    Yang, Yanfeng
    Zhang, Jingjie
    ELECTROCHIMICA ACTA, 2015, 153 : 540 - 545
  • [29] Cobalt phosphide embedded in a graphene nanosheet network as a high-performance anode for Li-ion batteries
    Yang, Yang
    Jiang, Yufeng
    Fu, Wenbin
    Liao, Xiao-Zhen
    He, Yu-Shi
    Tang, Wan
    Alamgir, Faisal M.
    Ma, Zi-Feng
    DALTON TRANSACTIONS, 2019, 48 (22) : 7778 - 7785
  • [30] Guiding Uniformly Distributed Li-Ion Flux by Lithiophilic Covalent Organic Framework Interlayers for High-Performance Lithium Metal Anodes
    Li, Zihao
    Ji, Wenyan
    Wang, Tian-Xiong
    Zhang, Yunrui
    Li, Zhen
    Ding, Xuesong
    Han, Bao-Hang
    Feng, Wei
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) : 22586 - 22596