Remaining useful life prediction of rolling bearings based on Bayesian neural network and uncertainty quantification

被引:10
|
作者
Jiang, Guang-Jun [1 ,2 ]
Yang, Jin-Sen [1 ,2 ]
Cheng, Tian-Cai [1 ,2 ,3 ]
Sun, Hong-Hua [1 ,2 ]
机构
[1] Inner Mongolia Univ Technol, Sch Mech Engn, Hohhot, Inner Mongolia, Peoples R China
[2] Inner Mongolia Key Lab Adv Mfg Technol, Hohhot, Inner Mongolia, Peoples R China
[3] Inner Mongolia Univ Technol, Sch Mech Engn, Hohhot 010050, Inner Mongolia, Peoples R China
关键词
Bayesian neural network; CNNLSTM; remaining useful life; rolling bearings; RELIABILITY-ANALYSIS;
D O I
10.1002/qre.3308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper constructs a remaining useful life (RUL) prediction model combining a convolutional neural network and a long short-term memory network (CNNLSTM) to support decision-making, especially the safety of rotational equipment. It avoids the influence of personnel and realizes the complementary advantages of the network. With the assistance of Bayesian short-term and long-term memory neural networks, the remaining life prediction method is able to provide the confidence interval of the remaining life prediction of rolling bearings. The compression between the proposed method and existing state-of-the-art methods validated the good performance of the proposed method. Overall, the proposed method contributes to life prediction and condition-based maintenance of bearings and complex rotational systems.
引用
收藏
页码:1756 / 1774
页数:19
相关论文
共 50 条
  • [31] Remaining Useful Life Prediction and Fault Diagnosis of Rolling Bearings Based on Short-Time Fourier Transform and Convolutional Neural Network
    Zhou, Shuang
    Xiao, Maohua
    Bartos, Petr
    Filip, Martin
    Geng, Guosheng
    SHOCK AND VIBRATION, 2020, 2020
  • [32] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Liu, Jingna
    Hao, Rujiang
    Liu, Qiang
    Guo, Wenwu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1567 - 1578
  • [33] A Remaining Useful Life Prediction Method of Rolling Bearings Based on Deep Reinforcement Learning
    Zheng, Guokang
    Li, Yasong
    Zhou, Zheng
    Yan, Ruqiang
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (13): : 22938 - 22949
  • [34] Prediction of remaining useful life of rolling element bearings based on LSTM and exponential model
    Jingna Liu
    Rujiang Hao
    Qiang Liu
    Wenwu Guo
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1567 - 1578
  • [35] Remaining useful life prediction based on an integrated neural network
    Zhang Y.-F.
    Lu Z.-Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2020, 42 (10): : 1372 - 1380
  • [36] Prediction on the Remaining Useful Life of Rolling Bearings Using Ensemble DLSTM
    Jiang, Miao
    Xiang, Yang
    SHOCK AND VIBRATION, 2023, 2023
  • [37] Remaining Useful Life Prediction Model for Rolling Bearings Based on MFPE-MACNN
    Wang, Yaping
    Wang, Jinbao
    Zhang, Sheng
    Xu, Di
    Ge, Jianghua
    ENTROPY, 2022, 24 (07)
  • [38] Remaining Useful Life Prediction of Rolling Element Bearings Based on Unscented Kalman Filter
    Qi, Junyu
    Mauricio, Alexadre
    Sarrazin, Mathieu
    Janssens, Karl
    Gryllias, Konstantinos
    ADVANCES IN CONDITION MONITORING OF MACHINERY IN NON-STATIONARY OPERATIONS (CMMNO 2018), 2019, 15 : 111 - 121
  • [39] Remaining Useful Life Prediction of Rolling Bearings Based on Policy Gradient Informer Model
    Xiong, Jiahao
    Li, Feng
    Tang, Baoping
    Wang, Yongchao
    Luo, Ling
    Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2024, 56 (04): : 273 - 286
  • [40] Method for remaining useful life prediction of rolling bearings based on deep reinforcement learning
    Wang, Yipeng
    Li, Yonghua
    Lu, Hang
    Wang, Denglong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (09):