DnRCNN: Deep Recurrent Convolutional Neural Network for HSI Destriping

被引:25
|
作者
Guan, Juntao [1 ,2 ]
Lai, Rui [1 ,2 ]
Li, Huanan [1 ,2 ]
Yang, Yintang [1 ,2 ]
Gu, Lin [3 ,4 ]
机构
[1] Xidian Univ, Sch Microelect, Xian 710071, Peoples R China
[2] Xidian Univ, Chongqing Innovat Res Inst Integrated Circuits, Chongqing 400031, Peoples R China
[3] RIKEN AIP, Tokyo 1030027, Japan
[4] Univ Tokyo, Tokyo 1538904, Japan
关键词
Correlation; Logic gates; Feature extraction; Convolution; Noise measurement; Image restoration; Convolutional neural networks; Convolution neural network; destriping; hyperspectral image (HSI) restoration; recurrent neural network (RNN); REMOTE-SENSING IMAGE; HYPERSPECTRAL IMAGERY; STRIPE NOISE; REMOVAL; SPARSE; UNIT;
D O I
10.1109/TNNLS.2022.3142425
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In spite of achieving promising results in hyperspectral image (HSI) restoration, deep-learning-based methodologies still face the problem of spectral or spatial information loss due to neglecting the inner correlation of HSI. To address this issue, we propose an innovative deep recurrent convolution neural network (DnRCNN) model for HSI destriping. To the best of our knowledge, this is the first study on HSI destriping from the perspective of inner band and interband correlation explorations with the recurrent convolution neural network. In the novel DnRCNN, a selective recurrent memory unit (SRMU) is designed to respectively extract the correlative features involved in spectral and spatial domains. Moreover, an innovative recurrent fusion (RF) strategy incorporated with group concatenation is further proposed to remove strip noise and preserve scene details using the complementary features from SRMU. Experimental results on extensive HSI datasets validated that the proposed method achieves a new state-of-the-art (SOTA) HSI destriping performance.
引用
收藏
页码:3255 / 3268
页数:14
相关论文
共 50 条
  • [41] Deep Convolutional Neural Network for Fog Detection
    Zhang, Jun
    Lu, Hui
    Xia, Yi
    Han, Ting-Ting
    Miao, Kai-Chao
    Yao, Ye-Qing
    Liu, Cheng-Xiao
    Zhou, Jian-Ping
    Chen, Peng
    Wang, Bing
    INTELLIGENT COMPUTING THEORIES AND APPLICATION, PT II, 2018, 10955 : 1 - 10
  • [42] Deep Convolutional Neural Network for Fire Detection
    Gotthans, Jakub
    Gotthans, Tomas
    Marsalek, Roman
    PROCEEDINGS OF THE 2020 30TH INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2020, : 128 - 133
  • [43] Military Surveillance with Deep Convolutional Neural Network
    Gupta, Anishi
    Gupta, Uma
    2018 3RD INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS, COMMUNICATION, COMPUTER, AND OPTIMIZATION TECHNIQUES (ICEECCOT - 2018), 2018, : 1147 - 1152
  • [44] Deep learning with convolutional neural network in radiology
    Yasaka, Koichiro
    Akai, Hiroyuki
    Kunimatsu, Akira
    Kiryu, Shigeru
    Abe, Osamu
    JAPANESE JOURNAL OF RADIOLOGY, 2018, 36 (04) : 257 - 272
  • [45] Deep learning with convolutional neural network in radiology
    Koichiro Yasaka
    Hiroyuki Akai
    Akira Kunimatsu
    Shigeru Kiryu
    Osamu Abe
    Japanese Journal of Radiology, 2018, 36 : 257 - 272
  • [46] A hierarchical deep convolutional neural network and gated recurrent unit framework for structural damage detection
    School of Information Science and Engineering, Chongqing Jiaotong University, China
    不详
    不详
    Inf Sci, 2020, (117-130): : 117 - 130
  • [47] Breeds Classification with Deep Convolutional Neural Network
    Zhang, Yicheng
    Gao, Jipeng
    Zhou, Haolin
    ICMLC 2020: 2020 12TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, 2018, : 145 - 151
  • [48] Numerosity representation in a deep convolutional neural network
    Zhou, Cihua
    Xu, Wei
    Liu, Yujie
    Xue, Zhichao
    Chen, Rui
    Zhou, Ke
    Liu, Jia
    JOURNAL OF PACIFIC RIM PSYCHOLOGY, 2021, 15
  • [49] Deep Convolutional Neural Network for Image Deconvolution
    Xu, Li
    Ren, Jimmy S. J.
    Liu, Ce
    Jia, Jiaya
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [50] Text recognition in document images obtained by a smartphone based on deep convolutional and recurrent neural network
    Hassan El Bahi
    Abdelkarim Zatni
    Multimedia Tools and Applications, 2019, 78 : 26453 - 26481