Fish Scale for Wearable, Self-Powered TENG

被引:4
|
作者
Zhao, Liwei [1 ]
Han, Jin [1 ]
Zhang, Xing [1 ]
Wang, Chunchang [1 ]
机构
[1] Anhui Univ, Sch Mat Sci & Engn, Lab Dielect Funct Mat, Hefei 230601, Peoples R China
基金
中国国家自然科学基金;
关键词
fish scale; hydrogen bond; collagen; triboelectric effect; triboelectric nanogenerators; TRIBOELECTRIC NANOGENERATOR; ENERGY; CONVERSION;
D O I
10.3390/nano14050463
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Flexible and wearable devices are attracting more and more attention. Herein, we propose a self-powered triboelectric nanogenerator based on the triboelectric effect of fish scales. As the pressure on the nanogenerator increases, the output voltage of the triboelectric nanogenerator increases. The nanogenerator can output a voltage of 7.4 V and a short-circuit current of 0.18 mu A under a pressure of 50 N. The triboelectric effect of fish scales was argued to be related to the lamellar structure composed of collagen fiber bundles. The nanogenerator prepared by fish scales can sensitively perceive human activities such as walking, finger tapping, and elbow bending. Moreover, fish scales are a biomass material with good biocompatibility with the body. The fish-scale nanogenerator is a kind of flexible, wearable, and self-powered triboelectric nanogenerator showing great prospects in healthcare and body information monitoring.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Wearable Self-Powered Multi-Parameter Respiration Sensor
    Dai, Jieyu
    Meng, Jianping
    Zhao, Xiaoming
    Zhang, Weiyi
    Fan, Yubo
    Shi, Bojing
    Li, Zhou
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (07)
  • [42] Self-Powered Wearable IoT Devices for Health and Activity Monitoring
    Bhat, Ganapati
    Gupta, Ujjwal
    Tuncel, Yigit
    Karabacak, Fatih
    Ozev, Sule
    Ogras, Umit Y.
    FOUNDATIONS AND TRENDS IN ELECTRONIC DESIGN AUTOMATION, 2019, 13 (03): : 145 - 269
  • [43] Flexible Technologies for Self-Powered Wearable Health and Environmental Sensing
    Misra, Veena
    Bozkurt, Alper
    Calhoun, Benton
    Jackson, Thomas N.
    Jur, Jesse S.
    Lach, John
    Lee, Bongmook
    Muth, John
    Oralkan, Oemer
    Oeztuerk, Mehmet
    Trolier-McKinstry, Susan
    Vashaee, Daryoosh
    Wentzloff, David
    Zhu, Yong
    PROCEEDINGS OF THE IEEE, 2015, 103 (04) : 665 - 681
  • [44] Piezoelectric nanogenerators for self-powered wearable and implantable bioelectronic devices
    Das, Kuntal Kumar
    Basu, Bikramjit
    Maiti, Pralay
    Dubey, Ashutosh Kumar
    ACTA BIOMATERIALIA, 2023, 171 : 85 - 113
  • [45] Triboelectric nanogenerators as wearable power sources and self-powered sensors
    Xiong Pu
    Chi Zhang
    Zhong Lin Wang
    NationalScienceReview, 2023, 10 (01) : 28 - 48
  • [46] Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators
    Yang, Lanxin
    Ma, Zhihao
    Tian, Yun
    Meng, Bo
    Peng, Zhengchun
    MICROMACHINES, 2021, 12 (06)
  • [47] Self-Powered, Stretchable, and Wearable Ion Gel Mechanoreceptor Sensors
    Chun, Kyoung-Yong
    Seo, Seunghwan
    Han, Chang-Soo
    ACS SENSORS, 2021, 6 (05) : 1940 - 1948
  • [48] Stretchable Thermoelectric Generators for Self-Powered Wearable Health Monitoring
    Zadan, Mason
    Wertz, Anthony
    Shah, Dylan
    Patel, Dinesh K.
    Zu, Wuzhou
    Han, Youngshang
    Gelorme, Jeff
    Mea, Hing Jii
    Yao, Lining
    Malakooti, Mohammad H.
    Ko, Seung Hwan
    Kazem, Navid
    Majidi, Carmel
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (39)
  • [49] Recent Advances in Self-Powered Tactile Sensing for Wearable Electronics
    Liu, Ling-Feng
    Li, Tong
    Lai, Qin-Teng
    Tang, Guowu
    Sun, Qi-Jun
    MATERIALS, 2024, 17 (11)
  • [50] A stretching-insensitive, self-powered and wearable pressure sensor
    Gao, Fangfang
    Zhao, Xuan
    Zhang, Zheng
    An, Linlin
    Xu, Liangxu
    Xun, Xiaochen
    Zhao, Bin
    Ouyang, Tian
    Zhang, Yue
    Liao, Qingliang
    Wang, Li
    NANO ENERGY, 2022, 91