CMOS MEMS Resonator for Physical Reservoir Computing

被引:1
|
作者
Chiu, Yi [1 ,2 ]
Tsai, Fang-Wei [1 ]
Wang, Liang-Kai [1 ]
Lee, Yuan-Chieh [1 ]
Garg, Manu [2 ,3 ]
Hong, Hao-Chiao [1 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Elect & Comp Engn, Hsinchu, Taiwan
[2] Natl Yang Ming Chiao Tung Univ, Int Coll Semicond Technol, Hsinchu, Taiwan
[3] Indian Inst Technol Delhi IITD, Ctr Appl Res Elect CARE, New Delhi, India
来源
关键词
CMOS MEMS; physical reservoir computing; clamped-clamped beam; FPGA; parity benchmark;
D O I
10.1109/SENSORS56945.2023.10325281
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents a CMOS-MEMS clamped-clamped (CC) beam for physical reservoir computing. The device is designed and fabricated in the CMOS back-end-of-line (BEOL) metal and oxide layers. The resonant beam is electrostatically actuated to operate in the nonlinear states for delay-based physical reservoir computing. The closed-loop reservoir computing is realized by the nonlinear CC beam, a field programmable gate array (FPGA) controller, and a lock-in amplifier. The fabricated and post-processed CMOS MEMS device were characterized. Preliminary parity benchmark tests in different test conditions are presented.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] A Low Noise MEMS Based CMOS Resonator Using Magnetoelectric Sensor
    Nasrollahpour, Mehdi
    Matyushov, Alexei
    Zaeimbashi, Mohsen
    Sun, Nian Xiang
    2020 17TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC 2020), 2020, : 63 - 64
  • [42] Design, Modeling and Simulation of CMOS-MEMS Resonator for Biomedical Application
    Rabih, A. A. S.
    Dennis, J. O.
    Khir, M. H. Md
    Abdullah, M. A.
    2014 5TH INTERNATIONAL CONFERENCE ON INTELLIGENT AND ADVANCED SYSTEMS (ICIAS 2014), 2014,
  • [43] A current-controlled magnonic reservoir for physical reservoir computing
    Ustinov, Alexey B.
    Haponchyk, Roman V.
    Kostylev, Mikhail
    APPLIED PHYSICS LETTERS, 2024, 124 (04)
  • [44] Hybrid MEMS-CMOS ion traps for NISQ computing
    Blain, M. G.
    Haltli, R.
    Maunz, P.
    Nordquist, C. D.
    Revelle, M.
    Stick, D.
    QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (03)
  • [45] Experimental demonstration of reservoir computing with a silicon resonator and time multiplexing
    Borghi, Massimo
    Biasi, Stefano
    Pavesi, Lorenzo
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON GROUP IV PHOTONICS (GFP 2021), 2021,
  • [46] Physical reservoir computing-an introductory perspective
    Nakajima, Kohei
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2020, 59 (06)
  • [47] Physical Reservoir Computing with Origami - A Feasibility Study
    Bhovad, Priyanka
    Li, Suyi
    BEHAVIOR AND MECHANICS OF MULTIFUNCTIONAL MATERIALS XV, 2021, 11589
  • [48] A perspective on physical reservoir computing with nanomagnetic devices
    Allwood, Dan A.
    Ellis, Matthew O. A.
    Griffin, David
    Hayward, Thomas J.
    Manneschi, Luca
    Musameh, Mohammad F. KH.
    O'Keefe, Simon
    Stepney, Susan
    Swindells, Charles
    Trefzer, Martin A.
    Vasilaki, Eleni
    Venkat, Guru
    Vidamour, Ian
    Wringe, Chester
    APPLIED PHYSICS LETTERS, 2023, 122 (04)
  • [49] Recent advances in physical reservoir computing: A review
    Tanaka, Gouhei
    Yamane, Toshiyuki
    Heroux, Jean Benoit
    Nakane, Ryosho
    Kanazawa, Naoki
    Takeda, Seiji
    Numata, Hidetoshi
    Nakano, Daiju
    Hirose, Akira
    NEURAL NETWORKS, 2019, 115 : 100 - 123
  • [50] Physical Reservoir Computing in a Music Hall Experiment
    Conrad, Bradley
    Marghitu, Dan
    Perkins, Edmon
    JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2025, 147 (02):