Comparative analyses of MIL-88B(Fe) and MIL-100(Fe) metal organic frameworks as active anode materials for Li ion batteries

被引:7
|
作者
Pukazhselvan, D. [1 ,2 ]
Granadeiro, Carlos M. [3 ]
Loureiro, Francisco J. A. [1 ,2 ]
Shaula, Aliaksandr L. [1 ,2 ]
Mikhalev, Sergey M. [1 ,2 ]
Goncalves, Gil [1 ,2 ]
Fagg, Duncan Paul [1 ,2 ]
机构
[1] Univ Aveiro, TEMA Ctr Mech Technol & Automat, Dept Mech Engn, P-3810193 Aveiro, Portugal
[2] LASI Intelligent Syst Associate Lab, P-4800058 Guimaraes, Portugal
[3] Univ Porto, Fac Sci, Dept Chem & Biochem, LAQV REQUIMTE, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
关键词
Secondary batteries; Metal organic frameworks; Nanomaterials; Impedance; Microstructure; RELAXATION-TIMES; IRON; SPECTROSCOPY; POLYMERS; ARSENATE; NANORODS; REMOVAL; STORAGE; CARBON;
D O I
10.1016/j.electacta.2023.142989
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Two Fe based metal organic framework (MOF) nanorod structures, MIL-88B(Fe) and MIL-100(Fe), were syn-thesized and their performance as working electrodes for Li ion half-cell batteries was evaluated under identical testing conditions. It was found that MIL-88B(Fe) provides a charge / discharge capacity of 468 mAh/g at the current density of 100 mA/g, which is over 3 times higher as compared to that of MIL-100(Fe) under the same conditions. Nevertheless, after an impressive charge / discharge capacity in the first few cycles, a slow capacity degradation was noticed in the case of the MIL-88B(Fe) material. Energy dispersive spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy results suggest that capacity degradation may be due to strained metal coordination in the MIL-88B(Fe) network. In contrast, despite moderate charge / discharge capacity such issues are identified to be minimal in the case of MIL-100(Fe). Electrochemical impedance spectroscopy (EIS) analyses suggest that ohmic and polarization resistance are smaller for MIL-88B(Fe) as compared to MIL-100(Fe) (both cycle 1 and 100). This makes MIL-88B(Fe) an attractive anode over MIL-100(Fe) for Li ion batteries, but stability issues remain a concern with MIL-88(B)Fe.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Selective ethylene tetramerization with actived metal-organic framework MIL-100(Fe)
    Han, Yang
    Zhang, Ying
    Guang, Xu
    Liu, Xiangyun
    Feng, Guangliang
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [12] Stable polyoxometalate insertion within the mesoporous metal organic framework MIL-100(Fe)
    Canioni, Romain
    Roch-Marchal, Catherine
    Secheresse, Francis
    Horcajada, Patricia
    Serre, Christian
    Hardi-Dan, Menaschi
    Ferey, Gerard
    Greneche, Jean-Marc
    Lefebvre, Frederic
    Chang, Jong-San
    Hwang, Young-Kyu
    Lebedev, Oleg
    Turner, Stuart
    Van Tendeloo, Gustaaf
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (04) : 1226 - 1233
  • [13] Comparative Study of Hydrogen Sulfide Adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) Metal-Organic Frameworks at Room Temperature
    Hamon, Lomig
    Serre, Christian
    Devic, Thomas
    Loiseau, Thierry
    Millange, Franck
    Ferey, Gerard
    De Weireld, Guy
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (25) : 8775 - +
  • [14] Electrochemical performance of MIL-53(Fe)@RGO as an Organic Anode Material for Li-ion Batteries
    Zhang, Chuanhui
    Hu, Weiqiang
    Jiang, Heng
    Chang, Jeng-Kuei
    Zheng, Mingsen
    Wu, Qi-Hui
    Dong, Quanfeng
    [J]. ELECTROCHIMICA ACTA, 2017, 246 : 528 - 535
  • [15] A visible-light photoinduced controlled radical polymerization using recyclable MIL-100 (Fe) metal–organic frameworks
    Tuyen Bich Thi Nguyen
    Tam Huu Nguyen
    Thao Phuong Le Nguyen
    Cam Hong Thi Nguyen
    Viet Quoc Nguyen
    Chau Duc Tran
    Tam Hoang Luu
    Le-Thu T. Nguyen
    Thanh Son Cu
    Mai Ha Hoang
    Ha Tran Nguyen
    Quoc-Thiet Nguyen
    [J]. Journal of Polymer Research, 2023, 30
  • [16] Hydroxyalkylation of Phenol with Formaldehyde to Bisphenol F Catalyzed by Keggin Phosphotungstic Acid Encapsulated in Metal-Organic Frameworks MIL-100(Fe or Cr) and MIL-101(Fe or Cr)
    Chen, Meng
    Yan, Jiaqi
    Tan, Ying
    Li, Yongfei
    Wu, Zhimin
    Pan, Langsheng
    Liu, Yuejin
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2015, 54 (47) : 11804 - 11813
  • [17] Delayed Drug Release Films Based on MIL-100(Fe) Metal-Organic Framework
    Pak, A. M.
    Vol'khina, T. N.
    Nelyubina, Yu. V.
    Novikov, V. V.
    [J]. RUSSIAN JOURNAL OF COORDINATION CHEMISTRY, 2024, 50 (01) : 15 - 20
  • [18] Unraveling the Water Adsorption Mechanism in the Mesoporous MIL-100(Fe) Metal-Organic Framework
    Mileo, Paulo G. M.
    Cho, Kyung Ho
    Park, Jaedeuk
    Devautour-Vinot, Sabine
    Chang, Jong-San
    Maurin, Guillaume
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (37): : 23014 - 23025
  • [19] A Hybrid Supercapacitor based on Porous Carbon and the Metal-Organic Framework MIL-100(Fe)
    Campagnol, Nicolo
    Romero-Vara, Ricardo
    Deleu, Willem
    Stappers, Linda
    Binnemans, Koen
    De Vos, Dirk E.
    Fransaer, Jan
    [J]. CHEMELECTROCHEM, 2014, 1 (07): : 1182 - 1188
  • [20] A visible-light photoinduced controlled radical polymerization using recyclable MIL-100 (Fe) metal-organic frameworks
    Nguyen, Tuyen Bich Thi
    Nguyen, Tam Huu
    Le Nguyen, Thao Phuong
    Nguyen, Cam Hong Thi
    Nguyen, Viet Quoc
    Tran, Chau Duc
    Luu, Tam Hoang
    Nguyen, Le-Thu T.
    Cu, Thanh Son
    Hoang, Mai Ha
    Nguyen, Ha Tran
    Nguyen, Quoc-Thiet
    [J]. JOURNAL OF POLYMER RESEARCH, 2023, 30 (12)