Quasi-Newton updating for large-scale distributed learning

被引:1
|
作者
Wu, Shuyuan [1 ]
Huang, Danyang [2 ]
Wang, Hansheng [3 ]
机构
[1] Shanghai Univ Finance & Econ, Sch Stat & Management, Shanghai, Peoples R China
[2] Renmin Univ China, Ctr Appl Stat, Sch Stat, 59 Zhongguancun St, Beijing 100872, Peoples R China
[3] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
communication efficiency; computation efficiency; distributed system; quasi-Newton methods; statistical efficiency; CONVERGENCE;
D O I
10.1093/jrsssb/qkad059
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Distributed computing is critically important for modern statistical analysis. Herein, we develop a distributed quasi-Newton (DQN) framework with excellent statistical, computation, and communication efficiency. In the DQN method, no Hessian matrix inversion or communication is needed. This considerably reduces the computation and communication complexity of the proposed method. Notably, related existing methods only analyse numerical convergence and require a diverging number of iterations to converge. However, we investigate the statistical properties of the DQN method and theoretically demonstrate that the resulting estimator is statistically efficient over a small number of iterations under mild conditions. Extensive numerical analyses demonstrate the finite sample performance.
引用
收藏
页码:1326 / 1354
页数:29
相关论文
共 50 条
  • [31] A subspace limited memory quasi-Newton algorithm for large-scale nonlinear bound constrained optimization
    Ni, Q
    Yuan, Y
    MATHEMATICS OF COMPUTATION, 1997, 66 (220) : 1509 - 1520
  • [32] A diagonal quasi-Newton updating method for unconstrained optimization
    Neculai Andrei
    Numerical Algorithms, 2019, 81 : 575 - 590
  • [33] THE UPDATING OF LU-FACTORS IN QUASI-NEWTON METHODS
    PALOSCHI, JR
    PERKINS, JD
    COMPUTERS & CHEMICAL ENGINEERING, 1986, 10 (03) : 241 - 247
  • [34] A diagonal quasi-Newton updating method for unconstrained optimization
    Andrei, Neculai
    NUMERICAL ALGORITHMS, 2019, 81 (02) : 575 - 590
  • [36] Automatic preconditioning by limited memory quasi-Newton updating
    Morales, JL
    Nocedal, J
    SIAM JOURNAL ON OPTIMIZATION, 2000, 10 (04) : 1079 - 1096
  • [37] Preconditioning On Subspace Quasi-Newton Method For Large Scale Unconstrained Optimization
    Sim, Hong Seng
    Leong, Wah June
    Ismail, Fudziah
    STATISTICS AND OPERATIONAL RESEARCH INTERNATIONAL CONFERENCE (SORIC 2013), 2014, 1613 : 297 - 305
  • [38] Machine Learning in Quasi-Newton Methods
    Krutikov, Vladimir
    Tovbis, Elena
    Stanimirovic, Predrag
    Kazakovtsev, Lev
    Karabasevic, Darjan
    AXIOMS, 2024, 13 (04)
  • [39] Modeling Time-Varying Effects With Large-Scale Survival Data: An Efficient Quasi-Newton Approach
    He, Kevin
    Yang, Yuan
    Li, Yanming
    Zhu, Ji
    Li, Yi
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (03) : 635 - 645
  • [40] Continual Learning With Quasi-Newton Methods
    Vander Eeckt, Steven
    Van Hamme, Hugo
    IEEE ACCESS, 2025, 13 : 47485 - 47499