Application of Deep Learning in Software Defect Prediction: Systematic Literature Review and Meta-analysis

被引:20
|
作者
Zain, Zuhaira Muhammad [1 ]
Sakri, Sapiah [1 ]
Ismail, Nurul Halimatul Asmak [2 ]
机构
[1] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Informat Syst Dept, Riyadh, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Appl Coll, Dept Comp Sci & Informat Technol, Riyadh, Saudi Arabia
关键词
Deep Learning; Software Defect Prediction; Systematic Literature Review; Meta-Analysis; MEAN SQUARED ERROR; QUALITY;
D O I
10.1016/j.infsof.2023.107175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Context: Despite recent attention given to Software Defect Prediction (SDP), the lack of any systematic effort to assess existing empirical evidence on the application of Deep Learning (DL) in SDP indicates that it is still relatively under-researched.Objective: To synthesize literature on SDP using DL, pertaining to measurements, models, techniques, datasets, and achievements; to obtain a full understanding of current SDP-related methodologies using DL; and to compare the DL models' performances with those of Machine Learning (ML) models in classifying software defects.Method: We completed a thorough review of the literature in this domain. To answer the research issues, results from primary investigations were synthesized. The preliminary findings for DL vs. ML in SDP were verified by using meta-analysis (MA).Result: We discovered 63 primary studies that passed the systematic literature review quality evaluation. However, only 19 primary studies passed the MA quality evaluation. The five most popular performance mea-surements employed in SDP were f-measure, recall, accuracy, precision, and Area Under the Curve (AUC). The top five DL techniques used in building SDP models were Convolutional Neural Network (CNN), Deep Neural Network (DNN), Long Short-Term Memory (LSTM), Deep Belief Network (DBN), and Stacked Denoising Autoencoder (SDAE). PROMISE and NASA datasets were found to be used more frequently to train and test DL models in SDP. The MA results show that DL was favored over ML in terms of study and dataset across accuracy, f-measure, and AUC.Conclusion: The application of DL in SDP remains a challenge, but it has the potential to achieve better predictive performance when the performance-influencing parameters are optimized. We provide a reference point for future research which could be used to improve research quality in this domain.
引用
收藏
页数:28
相关论文
共 50 条
  • [11] Ensemble Classifiers in Software Defect Prediction: A Systematic Literature Review
    Olivares-Galindo, Johann A.
    Sanchez-Garcia, Angel J.
    Barrientos-Martinez, R. Erandi
    Ocharan-Hernandez, Jorge Octavio
    2023 11TH INTERNATIONAL CONFERENCE IN SOFTWARE ENGINEERING RESEARCH AND INNOVATION, CONISOFT 2023, 2023, : 1 - 8
  • [12] Deep learning for pneumothorax diagnosis: a systematic review and meta-analysis
    Sugibayashi, Takahiro
    Walston, Shannon L.
    Matsumoto, Toshimasa
    Mitsuyama, Yasuhito
    Miki, Yukio
    Ueda, Daiju
    EUROPEAN RESPIRATORY REVIEW, 2023, 32 (168):
  • [13] Role of Artificial Intelligence and Deep Learning in Skin Disease Prediction: A Systematic Review and Meta-analysis
    Nancy V.A.O.
    Prabhavathy P.
    Arya M.S.
    Annals of Data Science, 2024, 11 (06) : 2109 - 2139
  • [14] Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review
    Jorayeva, Manzura
    Akbulut, Akhan
    Catal, Cagatay
    Mishra, Alok
    SENSORS, 2022, 22 (07)
  • [15] Systematic literature review and meta-analysis
    Hughes, EG
    SEMINARS IN REPRODUCTIVE ENDOCRINOLOGY, 1996, 14 (02): : 161 - 169
  • [16] A systematic review of unsupervised learning techniques for software defect prediction
    Li, Ning
    Shepperd, Martin
    Guo, Yuchen
    INFORMATION AND SOFTWARE TECHNOLOGY, 2020, 122 (122)
  • [17] Application of Machine Learning Algorithms in Coronary Heart Disease: A Systematic Literature Review and Meta-Analysis
    Kutiame S.
    Millham R.
    Adekoya A.F.
    Tettey M.
    Weyori B.A.
    Appiahene P.
    International Journal of Advanced Computer Science and Applications, 2022, 13 (06) : 153 - 164
  • [18] Software defect prediction using hybrid techniques: a systematic literature review
    Malhotra, Ruchika
    Chawla, Sonali
    Sharma, Anjali
    SOFT COMPUTING, 2023, 27 (12) : 8255 - 8288
  • [19] Software defect prediction using hybrid techniques: a systematic literature review
    Ruchika Malhotra
    Sonali Chawla
    Anjali Sharma
    Soft Computing, 2023, 27 : 8255 - 8288
  • [20] A Systematic Review on Software Defect Prediction
    Singh, Pradeep Kumar
    Agarwal, Dishti
    Gupta, Aakriti
    2015 2ND INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM), 2015, : 1793 - 1797