A new subsurface precursor across the spring predictability barrier for the ENSO prediction

被引:0
|
作者
Zhang, Zhixiang [1 ,2 ,3 ,4 ]
Wang, Jianing [1 ,2 ,3 ,4 ]
Wang, Fan [1 ,2 ,3 ,4 ]
机构
[1] Inst Oceanol, Chinese Acad Sci, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
[2] Funct Lab Ocean Dynam & Climate, Pilot Natl Lab Marine Sci & Technol Qingdao, Qingdao, Peoples R China
[3] Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Peoples R China
[4] Univ Chinese Acad Sci, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
El Nino-Southern oscillation; Subsurface precursors; Regression analysis; Nin o 3.4 index; WARM WATER VOLUME; EL-NINO; PACIFIC-OCEAN; EQUATORIAL PACIFIC;
D O I
10.1016/j.dsr.2023.104213
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
Despite decades of research on forecasting the El Ni & ntilde;o-Southern Oscillation (ENSO) in the past decades, skillfully predicting the ENSO across the spring predictability barrier remains challenging. In this study, we utilize the ensemble of four model products to identify a new subsurface precursor consisting of the anomalous equatorial zonal velocity over 180 degrees-150 degrees W and 140-180 m and potential temperature in the western Pacific (over 120 degrees-140 degrees E and 120-160 m), which could predict the ENSO before spring by applying regression analysis. Such a precursor can predict the Ni & ntilde;o 3.4 index in December at a lead time of 13 months with a regressed correlation of 0.79. The anomalous subsurface zonal velocity in the central Pacific favors the eastward migration of the warm water during the development of El Ni & ntilde;o. Further validations with diverse training and application periods indicate that for initialization in November, this new precursor shows high skills in predicting the Ni & ntilde;o 3.4 index at a lead time of 6-18 months over 1993-2016, outperforming counterparts for the other traditional precursors. Our study can help highlight the importance of subsurface processes in the ENSO development, improving our general ability to predict the ENSO, and enabling better preparedness for the implications of its occurrence.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Enhancing the ENSO Predictability beyond the Spring Barrier
    Chen, Han-Ching
    Tseng, Yu-Heng
    Hu, Zeng-Zhen
    Ding, Ruiqiang
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [2] Enhancing the ENSO Predictability beyond the Spring Barrier
    Han-Ching Chen
    Yu-Heng Tseng
    Zeng-Zhen Hu
    Ruiqiang Ding
    [J]. Scientific Reports, 10
  • [3] Spring predictability barrier of ENSO events from the perspective of an ensemble prediction system
    Zheng, Fei
    Zhu, Jiang
    [J]. GLOBAL AND PLANETARY CHANGE, 2010, 72 (03) : 108 - 117
  • [4] WWBs, ENSO predictability, the spring barrier and extreme events
    Lopez, Hosmay
    Kirtman, Ben P.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (17) : 10,114 - 10,138
  • [5] Prediction of ENSO Beyond Spring Predictability Barrier Using Deep Convolutional LSTM Networks
    Gupta, Mayuna
    Kodamana, Hariprasad
    Sandeep, S.
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [6] The Different Relationships between the ENSO Spring Persistence Barrier and Predictability Barrier
    Jin, Yishuai
    Liu, Zhengyu
    Duan, Wansuo
    [J]. JOURNAL OF CLIMATE, 2022, 35 (18) : 6207 - 6218
  • [7] Spring Predictability Barrier Phenomenon in ENSO Prediction Model Based on LSTM Deep Learning Algorithm
    Zhou, Pei
    Huang, Yingjie
    Hu, Bingyi
    Wei, Jun
    [J]. Beijing Daxue Xuebao (Ziran Kexue Ban)/Acta Scientiarum Naturalium Universitatis Pekinensis, 2021, 57 (06): : 1071 - 1078
  • [8] The Role of Extratropical Pacific in Crossing ENSO Spring Predictability Barrier
    Zhao, Yingying
    Jin, Yishuai
    Li, Jianping
    Capotondi, Antonietta
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2022, 49 (15)
  • [9] ENSO Forecasts near the Spring Predictability Barrier and Possible Reasons for the Recently Reduced Predictability
    Lai, Andy Wang-Chun
    Herzog, Michael
    Graf, Hans-F.
    [J]. JOURNAL OF CLIMATE, 2018, 31 (02) : 815 - 838
  • [10] Drivers of coupled model ENSO error dynamics and the spring predictability barrier
    Sarah M. Larson
    Ben P. Kirtman
    [J]. Climate Dynamics, 2017, 48 : 3631 - 3644