Drivers of coupled model ENSO error dynamics and the spring predictability barrier

被引:1
|
作者
Sarah M. Larson
Ben P. Kirtman
机构
[1] University of Miami,Rosenstiel School of Marine and Atmospheric Science
来源
Climate Dynamics | 2017年 / 48卷
关键词
ENSO; Forecast errors; Error dynamics; Spring predictability barrier; ENSO predictability;
D O I
暂无
中图分类号
学科分类号
摘要
Despite recent improvements in ENSO simulations, ENSO predictions ultimately remain limited by error growth and model inadequacies. Determining the accompanying dynamical processes that drive the growth of certain types of errors may help the community better recognize which error sources provide an intrinsic limit to predictability. This study applies a dynamical analysis to previously developed CCSM4 error ensemble experiments that have been used to model noise-driven error growth. Analysis reveals that ENSO-independent error growth is instigated via a coupled instability mechanism. Daily error fields indicate that persistent stochastic zonal wind stress perturbations (τx′)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\tau_{x}^{\prime } )$$\end{document} near the equatorial dateline activate the coupled instability, first driving local SST and anomalous zonal current changes that then induce upwelling anomalies and a clear thermocline response. In particular, March presents a window of opportunity for stochastic τx′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau_{x}^{\prime }$$\end{document} to impose a lasting influence on the evolution of eastern Pacific SST through December, suggesting that stochastic τx′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau_{x}^{\prime }$$\end{document} is an important contributor to the spring predictability barrier. Stochastic winds occurring in other months only temporarily affect eastern Pacific SST for 2–3 months. Comparison of a control simulation with an ENSO cycle and the ENSO-independent error ensemble experiments reveals that once the instability is initiated, the subsequent error growth is modulated via an ENSO-like mechanism, namely the seasonal strength of the Bjerknes feedback. Furthermore, unlike ENSO events that exhibit growth through the fall, the growth of ENSO-independent SST errors terminates once the seasonal strength of the Bjerknes feedback weakens in fall. Results imply that the heat content supplied by the subsurface precursor preceding the onset of an ENSO event is paramount to maintaining the growth of the instability (or event) through fall.
引用
收藏
页码:3631 / 3644
页数:13
相关论文
共 50 条
  • [1] Drivers of coupled model ENSO error dynamics and the spring predictability barrier
    Larson, Sarah M.
    Kirtman, Ben P.
    [J]. CLIMATE DYNAMICS, 2017, 48 (11) : 3631 - 3644
  • [2] The dynamics of error growth and predictability in a coupled model of ENSO
    Moore, AM
    Kleeman, R
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1996, 122 (534) : 1405 - 1446
  • [3] Enhancing the ENSO Predictability beyond the Spring Barrier
    Chen, Han-Ching
    Tseng, Yu-Heng
    Hu, Zeng-Zhen
    Ding, Ruiqiang
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [4] Enhancing the ENSO Predictability beyond the Spring Barrier
    Han-Ching Chen
    Yu-Heng Tseng
    Zeng-Zhen Hu
    Ruiqiang Ding
    [J]. Scientific Reports, 10
  • [5] The 'spring predictability barrier' for ENSO predictions and its possible mechanism: results from a fully coupled model
    Duan, Wansuo
    Wei, Chao
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2013, 33 (05) : 1280 - 1292
  • [6] WWBs, ENSO predictability, the spring barrier and extreme events
    Lopez, Hosmay
    Kirtman, Ben P.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (17) : 10,114 - 10,138
  • [7] The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the “Spring Predictability Barrier” for ENSO
    段晚锁
    赵鹏
    胡均亚
    徐辉
    [J]. Journal of Meteorological Research, 2016, 30 (06) : 853 - 866
  • [8] The Role of Nonlinear Forcing Singular Vector Tendency Error in Causing the "Spring Predictability Barrier" for ENSO
    Duan Wansuo
    Zhao Peng
    Hu Junya
    Xu Hui
    [J]. JOURNAL OF METEOROLOGICAL RESEARCH, 2016, 30 (06) : 853 - 866
  • [9] The role of nonlinear forcing singular vector tendency error in causing the “spring predictability barrier” for ENSO
    Wansuo Duan
    Peng Zhao
    Junya Hu
    Hui Xu
    [J]. Journal of Meteorological Research, 2016, 30 : 853 - 866
  • [10] The Different Relationships between the ENSO Spring Persistence Barrier and Predictability Barrier
    Jin, Yishuai
    Liu, Zhengyu
    Duan, Wansuo
    [J]. JOURNAL OF CLIMATE, 2022, 35 (18) : 6207 - 6218