The B3 gene family in Medicago truncatula: Genome-wide identification and the response to salt stress

被引:3
|
作者
Gao, Jing [1 ,2 ,4 ]
Ma, Guangjing [1 ,2 ,4 ]
Chen, Junjie [1 ,4 ]
Gichovi, Bancy [1 ,2 ,4 ]
Cao, Liwen [1 ,3 ,4 ]
Liu, Zhihao [5 ]
Chen, Liang [1 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Innovat Acad Seed Design, CAS Key Lab Plant Germplasm Enhancement & Specialt, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Natl Ctr Technol Innovat Comprehens Utilizat Salin, Academician Workstn Agr High Tech Ind Area Yellow, Dongying 257300, Peoples R China
[4] Chinese Acad Sci, State Key Lab Plant Divers & Specialty Crops, Wuhan Bot Garden, Wuhan 430074, Peoples R China
[5] Hubei Normal Univ, Key Lab Edible Wild Plants Conservat & Utilizat, Huangshi 435002, Peoples R China
基金
中国国家自然科学基金;
关键词
B3 gene family; Genome-wide analysis; Medicago truncatula; Salt stress; TRANSCRIPTION FACTORS; EXPRESSION; ARABIDOPSIS; TOLERANCE; SEQUENCE; PROTEIN; NA+; ROS;
D O I
10.1016/j.plaphy.2023.108260
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The B3 family genes constitute a pivotal group of transcription factors that assume diverse roles in the growth, development, and response to both biotic and abiotic stresses in plants. Medicago truncatula is a diploid plant with a relatively small genome, adopted as a model species for legumes genetics and functional genomic research. In this study, 173 B3 genes were identified in the M. truncatula genome, and classified into seven subgroups by phylogenetic analysis. Collinearity analysis revealed that 18 MtB3 gene pairs arose from segmented replication events. Analysis of expression patterns disclosed that 61 MtB3s exhibited a spectrum of expression profiles across various tissues and in the response to salt stress, indicating their potential involvement in salt stress signaling response. Among these genes, MtB3-53 exhibited tissue-specific differential expression and demonstrated a rapid response to salt stress induction. Overexpression of MtB3-53 gene in Arabidopsis improves salt stress tolerance by increasing plant biomass and chlorophyll content, while reducing leaf cell membrane damage. Moreover, salt treatment resulted in more up-regulation of AtABF1, AtABI3, AtHKT1, AtKIN1, AtNHX1, and AtRD29A in MtB353 transgenic Arabidopsis plants compared to the wild type, providing evidences that MtB3-53 enhances plant salt tolerance not only by modulating ion homeostasis but also by stimulating the production of antioxidants, which leads to the alleviation of cellular damage caused by salt stress. In conclusion, this study provides a fundamental basis for future investigations into the B3 gene family and its capacity to regulate plant responses to environmental stressors.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Genome-Wide Identification and Characterization of DIR Genes in Medicago truncatula
    Min Song
    Xiangyong Peng
    Biochemical Genetics, 2019, 57 : 487 - 506
  • [32] Genome-Wide Identification of GRAS Gene Family and Their Responses to Abiotic Stress in Medicago sativa
    Zhang, Han
    Liu, Xiqiang
    Wang, Xuemeng
    Sun, Ming
    Song, Rui
    Mao, Peisheng
    Jia, Shangang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (14)
  • [33] Genome-Wide Identification and Characterization of DIR Genes in Medicago truncatula
    Song, Min
    Peng, Xiangyong
    BIOCHEMICAL GENETICS, 2019, 57 (04) : 487 - 506
  • [34] Genome-Wide Identification and Characterization of Short-Chain Dehydrogenase/Reductase (SDR) Gene Family in Medicago truncatula
    Yu, Shuhan
    Sun, Qiguo
    Wu, Jiaxuan
    Zhao, Pengcheng
    Sun, Yanmei
    Guo, Zhenfei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (17)
  • [35] Genome-Wide Identification and Expression Profiling Analysis of the Trihelix Gene Family Under Abiotic Stresses in Medicago truncatula
    Liu, Xiqiang
    Zhang, Han
    Ma, Lin
    Wang, Zan
    Wang, Kun
    GENES, 2020, 11 (11) : 1 - 18
  • [36] Calmodulin-Like (CML) Gene Family in Medicago truncatula: Genome-Wide Identification, Characterization and Expression Analysis
    Sun, Qiguo
    Yu, Shuhan
    Guo, Zhenfei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (19) : 1 - 16
  • [37] Genome-wide characterization and expression analysis of the ADF gene family in response to salt and drought stress in alfalfa (Medicago sativa)
    Shi, Mengmeng
    Wang, Yike
    Lv, Peng
    Gong, Yujie
    Sha, Qi
    Zhao, Xinyan
    Zhou, Wen
    Meng, Lingtao
    Han, Zegang
    Zhang, Lingxiao
    Sun, Yongwang
    FRONTIERS IN PLANT SCIENCE, 2025, 15
  • [38] Genome-Wide Analyses of the Soybean GmABCB Gene Family in Response to Salt Stress
    Zou, Hui
    Fan, Caiyun
    Chen, Xiulin
    Chen, Ruifeng
    Sun, Zhihui
    Wan, Xiaorong
    GENES, 2025, 16 (02)
  • [39] Genome-wide identification and analysis of the NLR gene family in Medicago ruthenica
    Tong, Chunyan
    Zhang, Yutong
    Shi, Fengling
    FRONTIERS IN GENETICS, 2023, 13
  • [40] In silico genome-wide identification, phylogeny and expression analysis of the R2R3-MYB gene family in Medicago truncatula
    ZHENG Xing-wei
    YI Deng-xia
    SHAO Lin-hui
    LI Cong
    JournalofIntegrativeAgriculture, 2017, 16 (07) : 1576 - 1591