Electrochemical CO2 reduction catalyzed by organic/inorganic hybrids

被引:22
|
作者
Song, Daqi [1 ,2 ]
Lian, Yuebin [1 ,3 ,4 ]
Wang, Min [1 ,2 ]
Su, Yanhui [1 ,2 ]
Lyu, Fenglei [1 ,2 ]
Deng, Zhao [1 ]
Peng, Yang [1 ,2 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat SIEMIS, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
[2] Soochow Univ, Jiangsu Key Lab Adv Negat Carbon Technol, Suzhou 215006, Jiangsu, Peoples R China
[3] Key Lab Core Technol High Specif Energy Battery &, Suzhou 215006, Jiangsu, Peoples R China
[4] Changzhou Inst Technol, Sch Photoelect Engn, Changzhou 213032, Peoples R China
来源
ESCIENCE | 2023年 / 3卷 / 02期
基金
中国国家自然科学基金;
关键词
CO (2) reduction reaction; Electrocatalysts; Organic/inorganic hybrids; Intermediates adsorption; Local chemical environment; ELECTRODE-ELECTROLYTE INTERFACE; METAL-ORGANIC FRAMEWORKS; CARBON-DIOXIDE; ELECTROCATALYTIC CONVERSION; CATIONIC SURFACTANTS; COPPER NANOPARTICLES; HYDROGEN EVOLUTION; FUNCTIONAL-GROUPS; H-2; EVOLUTION; ELECTROREDUCTION;
D O I
10.1016/j.esci.2023.100097
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electroreduction of CO2 into value-added chemicals and fuels utilizing renewable electricity offers a sustainable way to meet the carbon-neutral goal and a viable solution for the storage of intermittent green energy sources. At the core of this technology is the development of electrocatalysts to accelerate the redox kinetics of CO2 reduction reactions (CO2RR) toward high targeted-product yield at minimal energy input. This perspective focuses on a unique category of CO2RR electrocatalysts embodying both inorganic and organic components to synergistically promote the reaction activity, selectivity and stability. First, we summarize recent progress on the design and fabrication of organic/inorganic hybrids CO2RR electrocatalysts, with special attention to the assembly protocols and structural configurations. We then carry out a comprehensive discussion on the mechanistic understanding of CO2RR processes tackled jointly by the inorganic and organic phases, with respect to the regulation of mass and charge transport, modification of double-layer configuration, tailoring of intermediates adsorption, and establishment of tandem pathways. At the end, we outline future challenges in the rational design of organic/inorganic hybrids for CO2RR and further extend the scope to the device level. We hope this work could incentivize more research interests to construct organic/inorganic hybrids for mobilizing electrocatalytic CO2RR towards industrialization.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [31] Selective formation of ketones by electrochemical reduction of CO2 catalyzed by ruthenium complexes
    Tanaka, K
    Mizukawa, T
    APPLIED ORGANOMETALLIC CHEMISTRY, 2000, 14 (12) : 863 - 866
  • [32] ELECTROCHEMICAL REDUCTION OF CARBON-DIOXIDE .2. ELECTROCHEMICAL CO2 REDUCTION CATALYZED BY RU METAL-COMPLEXES
    TANAKA, K
    DENKI KAGAKU, 1990, 58 (11): : 989 - 995
  • [33] ELECTROCHEMICAL REDUCTION OF CO2 TO METHANE
    FRESE, KW
    SUMMERS, DP
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 191 : 95 - COLL
  • [34] Electrochemical reduction of CO2 to fuels
    Bell, Alexis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2015, 249
  • [35] MEDIATED ELECTROCHEMICAL REDUCTION OF CO2
    DUBOIS, DL
    MIEDANER, A
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1986, 191 : 92 - COLL
  • [36] Selectivity in Electrochemical CO2 Reduction
    Saha, Paramita
    Amanullah, Sk
    Dey, Abhishek
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (02) : 134 - 144
  • [37] Simulation of the electrochemical reduction of CO2
    Bell, Alexis
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [38] Electrochemical reduction of CO2 in microspores
    Yamamoto, T
    Hirota, K
    Tryk, DA
    Hashimoto, K
    Fujishima, A
    Okawa, M
    CHEMISTRY LETTERS, 1998, (08) : 825 - 826
  • [39] Electrochemical reduction of CO2 in micropores
    Department of Applied Chemistry, Faculty of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, Japan
    不详
    不详
    Stud. Surf. Sci. Catal., (585-588):
  • [40] Electrochemical reduction of CO2 in micropores
    Yamamoto, T
    Tryk, DA
    Hashimoto, K
    Fujishima, A
    Okawa, M
    ADVANCES IN CHEMICAL CONVERSIONS FOR MITIGATING CARBON DIOXIDE, 1998, 114 : 585 - 588