Insdel codes from subspace and rank-metric codes

被引:0
|
作者
Aggarwal, Vaneet [1 ,2 ]
Pratihar, Rakhi [2 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Indraprastha Inst Informat Technol Delhi, Delhi, India
基金
美国国家卫生研究院;
关键词
Insdel codes; Subspace codes; Rank -metric codes; REED-SOLOMON CODES; DELETION; INSERTION; DNA;
D O I
10.1016/j.disc.2023.113675
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Insertion and deletion (insdel in short) codes are designed to deal with synchronization errors in communication channels caused by insertions and deletions of message symbols. These codes have received a lot of attention due to their applications in diverse areas such as computational biology, DNA data storage, race-track memory error corrections, language processing, and synchronous digital communication networks. In the present work, we study constructions and limitations of insdel codes from rank metric and subspace codes. This paper studies and improves the idea of the work [4] by Hao Chen on the connection between insdel codes and subspace codes. We discuss why subspace code is a natural choice for constructing insdel codes and show that the interleaved Gabidulin codes can be used to construct nonlinear insdel codes approaching the Singleton bound. Then we show that the indexing scheme of transforming efficient Hamming metric codes to efficient insdel codes can be adapted for the class of rank metric codes. And that improves the base field size of the construction of insdel codes from lifted rank-metric codes. It is also shown that the size of the insdel code from a subspace code can be improved significantly than in the previously proposed construction. We give an algebraic condition for a linear Gabidulin rank metric code to be optimal insdel code adapting the condition proved for Reed-Solomon codes. Moreover, we give constructions of linear and nonlinear insdel codes from Sidon spaces. (c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Optimal Ferrers Diagram Rank-Metric Codes
    Etzion, Tuvi
    Gorla, Elisa
    Ravagnani, Alberto
    Wachter-Zeh, Antonia
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2016, 62 (04) : 1616 - 1630
  • [32] Space-Time Codes Based on Rank-Metric Codes and Their Decoding
    Puchinger, Sven
    Stern, Sebastian
    Bossert, Martin
    Fischer, Robert F. H.
    2016 13TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2016, : 125 - 130
  • [33] Equivalence for Rank-Metric and Matrix Codes and Automorphism Groups of Gabidulin Codes
    Morrison, Katherine
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 7035 - 7046
  • [34] On Decoding Rank-Metric Codes Over Large Fields
    Roth, Ron M.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 944 - 951
  • [35] Security for Wiretap Networks via Rank-Metric Codes
    Silva, Danilo
    Kschischang, Frank R.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS, VOLS 1-6, 2008, : 176 - 180
  • [36] On Decoding Rank-Metric Codes over Large Fields
    Roth, Ron M.
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017, : 2756 - 2760
  • [37] q-polymatroids and their relation to rank-metric codes
    Gluesing-Luerssen, Heide
    Jany, Benjamin
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2022, 56 (03) : 725 - 753
  • [38] Constructions for Optimal Ferrers Diagram Rank-Metric Codes
    Liu, Shuangqing
    Chang, Yanxun
    Feng, Tao
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (07) : 4115 - 4130
  • [39] RANK-METRIC CODES, SEMIFIELDS, AND THE AVERAGE CRITICAL PROBLEM
    Gruica, A. N. I. N. A.
    Ravagnani, A. L. B. E. R. T. O.
    Sheekey, J. O. H. N.
    Zullo, F. E. R. D. I. N. A. N. D. O.
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2023, 37 (02) : 1079 - 1117
  • [40] q-polymatroids and their relation to rank-metric codes
    Heide Gluesing-Luerssen
    Benjamin Jany
    Journal of Algebraic Combinatorics, 2022, 56 : 725 - 753