Hydrothermal Synthesis of a Technical Lignin-Based Nanotube for the Efficient and Selective Removal of Cr(VI) from Aqueous Solution

被引:1
|
作者
Wang, Qiongyao [1 ]
Sun, Yongchang [1 ]
Hao, Mingge [1 ]
Yu, Fangxin [1 ]
He, Juanni [2 ]
机构
[1] Changan Univ, Sch Water & Environm, Key Lab Subsurface Hydrol & Ecol Effects Arid Reg, Minist Educ, Xian 710054, Peoples R China
[2] Huijin Technol Holding Grp Corp Ltd, Xian 710000, Peoples R China
来源
MOLECULES | 2023年 / 28卷 / 15期
关键词
lignin; nanotubes; adsorption; photocatalysis; Cr(VI); WASTE-WATER; ADSORPTION; CHROMIUM; PHOTOCATALYSIS; COMPOSITE; BEHAVIOR; PHASE; ION;
D O I
10.3390/molecules28155789
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aminated lignin (AL) was obtained by modifying technical lignin (TL) with the Mannich reaction, and aminated lignin-based titanate nanotubes (AL-TiNTs) were successfully prepared based on the AL by a facile hydrothermal synthesis method. The characterization of AL-TiNTs showed that a Ti-O bond was introduced into the AL, and the layered and nanotubular structure was formed in the fabrication of the nanotubes. Results showed that the specific surface area increased significantly from 5.9 m(2)/g (TL) to 188.51 m(2)/g (AL-TiNTs), indicating the successful modification of TL. The AL-TiNTs quickly adsorbed 86.22% of Cr(VI) in 10 min, with 99.80% removal efficiency after equilibration. Under visible light, AL-TiNTs adsorbed and reduced Cr(VI) in one step, the Cr(III) production rate was 29.76%, and the amount of total chromium (Cr) removal by AL-TiNTs was 90.0 mg/g. AL-TiNTs showed excellent adsorption capacities of Zn2+ (63.78 mg/g), Cd2+ (59.20 mg/g), and Cu2+ (66.35 mg/g). After four cycles, the adsorption capacity of AL-TiNTs still exceeded 40 mg/g. AL-TiNTs showed a high Cr(VI) removal efficiency of 95.86% in simulated wastewater, suggesting a promising practical application in heavy metal removal from wastewater.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Synthesis, characterization and kinetics of bentonite supported nZVI for the removal of Cr(VI) from aqueous solution
    Shi, Li-na
    Lin, Yu-Man
    Zhang, Xin
    Chen, Zu-liang
    CHEMICAL ENGINEERING JOURNAL, 2011, 171 (02) : 612 - 617
  • [32] Synthesis of magnetic biochar derived from cotton stalks for the removal of Cr(VI) from aqueous solution
    Ma, Fengfeng
    Zhao, Baowei
    Diao, Jingru
    WATER SCIENCE AND TECHNOLOGY, 2019, 79 (11) : 2106 - 2115
  • [33] REMOVAL OF Cr(VI) FROM AQUEOUS SOLUTION BY HAZELNUT HUSK CARBON
    Aydemir, Ferhat
    Altundag, Huseyin
    Imamoglu, Mustafa
    FRESENIUS ENVIRONMENTAL BULLETIN, 2012, 21 (11C): : 3589 - 3594
  • [34] Modeling and simulation for the adsorptive removal of Cr(VI) from aqueous solution
    Surendran, G.
    Sasank, B. Viswanath
    Baral, Saroj Sundar
    DESALINATION AND WATER TREATMENT, 2014, 52 (28-30) : 5652 - 5662
  • [35] Utilisation of Agriculture Weed for the Removal of Cr(VI) from Aqueous Solution
    Natarajan, Balasubramanian
    Nagarajan, Sulochana
    ACTA CHIMICA SLOVENICA, 2010, 57 (03) : 693 - 699
  • [36] The applications of populus fiber in removal of Cr(VI) from aqueous solution
    Li, Miaomiao
    Gong, Yumei
    Lyu, Aichao
    Liu, Yuanfa
    Zhang, Hong
    APPLIED SURFACE SCIENCE, 2016, 383 : 133 - 141
  • [37] Magnetic chitosan nanoparticles for removal of Cr(VI) from aqueous solution
    Nguyen Ngoc Thinh
    Pham Thi Bich Hanh
    Le Thi Thanh Ha
    Le Ngoc Anh
    Tran Vinh Hoang
    Vu Dinh Hoang
    Le Hai Dang
    Nguyen Van Khoi
    Tran Dai Lam
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2013, 33 (03): : 1214 - 1218
  • [38] Removal of Cr(VI) from aqueous solution by a commercial carbon black
    Radjenovic, Ankica
    Medunic, Gordana
    DESALINATION AND WATER TREATMENT, 2015, 55 (01) : 183 - 192
  • [39] Functionalized polyacrylamide by xanthate for Cr (VI) removal from aqueous solution
    Zhu, Guocheng
    Liu, Junfei
    Yin, Jun
    Li, Zhongwu
    Ren, Bozhi
    Sun, Yongjun
    Wan, Peng
    Liu, Yunsi
    CHEMICAL ENGINEERING JOURNAL, 2016, 288 : 390 - 398
  • [40] Removal of Cr(VI) from aqueous solution by London plane leaves
    Aoyama, M
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2003, 78 (05) : 601 - 604