Coating of SnO2-NiO nanoparticles with ultrathin graphite nanosheets as a high-performance anode material for lithium-ion batteries

被引:1
|
作者
Ye, Wenbin [1 ]
Lei, Jinxuan [1 ]
Jiang, Chaokui [1 ]
Feng, Zuyong [1 ]
Xiong, Deping [1 ]
He, Miao [1 ]
机构
[1] Guangdong Univ Technol, Sch Phys & Optoelect Engn, Guangzhou 510006, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-ion batteries; NiO; SnO2; Graphite; Anode; HIGH-CAPACITY; SNO2/GRAPHENE COMPOSITE; CAPABILITY; CHALLENGES; ELECTRODE; NIO;
D O I
10.1007/s11581-023-05093-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Large capacity, high rate, and long-term cycling stabilities have always been pursued by lithium-ion batteries (LIBs). In this work, the straightforward hydrothermal and high-speed ball milling programs were employed to create the SnO2-NiO-C anode material. NiO nanoparticles with unique hexagonal crystal structure are an ideal choice for ion cycling and embedding, which can stabilize the structure and prevent SnO2 from becoming coarser. The graphite encapsulated in the outer layer can effectively prevent volume expansion during the cycling as well. From the research results, SnO2-NiO-C exhibits a significant reversible capacity of 1224.3 mAh g(-1) after 300 cycles at 0.2 A g(-1), and after the fourth cycle, the coulombic efficiency remains above 97%. And it also possesses a long-term cycling stability of 820.1 mAh g(-1) after 1000 cycles at 1.0 A g(-1). Also, a significant rate property can reach 507.1 mAh g(-1) even at 5.0 A g(-1). Therefore, the SnO2-NiO-C anode material for LIBs is promising because of its excellent electrochemical performance.
引用
收藏
页码:3459 / 3471
页数:13
相关论文
共 50 条
  • [31] Two-Dimensional Mesoporous Carbon Nanosheets as a High-Performance Anode Material for Lithium-Ion Batteries
    Li, Jili
    Yao, Ruimin
    Bai, Ju
    Cao, Chuanbao
    CHEMPLUSCHEM, 2013, 78 (08): : 797 - 800
  • [32] SnO2 sheet/graphite composite as anode material with improved electrochemical performance for lithium-ion batteries
    Liu, Hongdong
    JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2014, 72 (03) : 644 - 647
  • [33] High performance NiO microsphere anode assembled from porous nanosheets for lithium-ion batteries
    Chu, Lihua
    Li, Meicheng
    Li, Xiaodan
    Wang, Yu
    Wan, Zipei
    Dou, Shangyi
    Song, Dandan
    Li, Yingfeng
    Jiang, Bing
    RSC ADVANCES, 2015, 5 (61) : 49765 - 49770
  • [34] Interconnected Sn@SnO2 Nanoparticles as an Anode Material for Lithium-Ion Batteries
    Rodriguez, Jassiel R.
    Hamann, Henry J.
    Mitchell, Garrett M.
    Ortalan, Volkan
    Gribble, Daniel
    Xiong, Beichen
    Pol, Vilas G.
    Ramachandran, P. Veeraraghavan
    ACS APPLIED NANO MATERIALS, 2023, 6 (13) : 11070 - 11076
  • [35] SnO2 sheet/graphite composite as anode material with improved electrochemical performance for lithium-ion batteries
    Hongdong Liu
    Journal of Sol-Gel Science and Technology, 2014, 72 : 644 - 647
  • [36] Ultrafine SnO2 nanoparticles on delaminated MXene nanosheets as an anode for lithium-ion batteries
    Zhao, Chen
    Wei, Zengyan
    Zhang, Jie
    He, Peigang
    Huang, Xiaoxiao
    Duan, Xiaoming
    Jia, Dechang
    Zhou, Yu
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 907
  • [37] Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries
    Guo, Peng
    Song, Huaihe
    Chen, Xiaohong
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) : 1320 - 1324
  • [38] A review of the carbon coating of the silicon anode in high-performance lithium-ion batteries
    Xu, Ze-Yu
    Shao, Hai-Bo
    Wang, Jian-Ming
    Xinxing Tan Cailiao/New Carbon Materials, 2024, 39 (05): : 896 - 917
  • [39] SnO2 nanoparticles anchored on graphene oxide as advanced anode materials for high-performance lithium-ion batteries
    Ruiping Liu
    Ning Zhang
    Xinyu Wang
    Chenhui Yang
    Hui Cheng
    Hanqing Zhao
    Frontiers of Materials Science, 2019, 13 : 186 - 192
  • [40] Decorating Phosphorus Anode with SnO2 Nanoparticles To Enhance Polyphosphides Chemisorption for High-Performance Lithium-Ion Batteries
    Liu, Cheng
    Han, Muyao
    Chen, Cheng-Lung
    Yin, Jingzhou
    Zhang, Lili
    Sun, Jie
    NANO LETTERS, 2023, 23 (08) : 3507 - 3515