Southern Ocean Control of 2°C Global Warming in Climate Models

被引:1
|
作者
Shin, So-Jung [1 ,2 ]
Yeh, Sang-Wook [3 ]
An, Soon-Il [1 ,2 ,4 ]
Keenlyside, Noel [5 ]
Xie, Shang-Ping [6 ]
Park, Jae-Heung [4 ]
机构
[1] Yonsei Univ, Dept Atmospher Sci, Seoul, South Korea
[2] Yonsei Univ, Irreversible Climate Change Res Ctr, Seoul, South Korea
[3] Hanyang Univ, Dept Marine Sci & Convergence Engn, Ansan, South Korea
[4] Pohang Univ Sci & Technol, Div Environm Sci & Engn, Pohang, South Korea
[5] Univ Bergen, Geophys Inst, Bjerknes Ctr Climate Res, Bergen, Norway
[6] Univ Calif San Diego, Scripps Inst Oceanog, La Jolla, CA USA
基金
新加坡国家研究基金会;
关键词
southern ocean condition; low level cloud amount feedback; Paris agreement; Antarctic sea ice; TOP-OF-ATMOSPHERE; HEAT UPTAKE; SEA-ICE; SENSITIVITY; CMIP5; 1.5-DEGREES-C; TEMPERATURES; CIRCULATION; CONVECTION; CLOUDS;
D O I
10.1029/2022EF003212
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Global warming will soon reach the Paris Agreement targets of 1.5 degrees C/2 degrees C temperature increase above pre-industrial levels. Under a business-as-usual scenario, the time to reach these targets varies widely among climate models. Using Coupled Model Intercomparison Project Phase 5 and 6, we show that a 2 degrees C global warming is determined by Southern Ocean (SO) state closely tied with a low-level cloud (LLC) amount feedback strength during reference (1861-1900) period; climate models with cold SO tend to accompany more low-level cloudiness and Antarctic sea ice concentration due to a strong LLC amount feedback. Consequently, initially cold SO models tend to simulate a fast global warming by absorbing more downward shortwave radiation compared to initially warm SO models because more LLC disappears due to a strong LLC amount feedback during the 2 degrees C rise. Our results demonstrate that climate models that correctly simulate initial SO state can improve 2 degrees C warming projections with reduced uncertainties. Plain Language Summary In December 2015 at Paris, United Nations agreed to hold the increase in the global average temperature to "well below" 2 degrees C above pre-industrial levels and pursuing efforts to limit 1.5 degrees C above pre-industrial levels. It naturally leads to a question as to when these targets will reach. However, under a business-as-usual scenario, the time to reach these targets varies widely among climate models. Using Coupled Model Intercomparison Project Phase 5 and 6, we show that a 2 degrees C global warming is closely related to the late 19th century condition of Southern Ocean (SO) state such that the initially cold SO climate models actually produced fast warming rate and vice versa. This is because these initially cold SO climate models that mostly accompany more low-level cloudiness and Antarctic sea ice concentration, could actually absorb more downward shortwave radiation by reducing cloudiness and sea-ice during a warming progress compared to initially warm SO models. Finally, our results demonstrate that climate models that correctly simulate initial SO state can improve 2 degrees C warming projections with reduced uncertainties.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The southern African climate under 1.5 °C and 2 °C of global warming as simulated by CORDEX regional climate models
    Maure, G.
    Pinto, I.
    Ndebele-Murisa, M.
    Muthige, M.
    Lennard, C.
    Nikulin, G.
    Dosio, A.
    Meque, A.
    ENVIRONMENTAL RESEARCH LETTERS, 2018, 13 (06):
  • [2] Global warming in ocean and climate modeling
    Wallace, M
    COMMUNICATIONS OF THE ACM, 2000, 43 (07) : 11 - 11
  • [3] The European climate under a 2 °C global warming
    Vautard, Robert
    Gobiet, Andreas
    Sobolowski, Stefan
    Kjellstrom, Erik
    Stegehuis, Annemiek
    Watkiss, Paul
    Mendlik, Thomas
    Landgren, Oskar
    Nikulin, Grigory
    Teichmann, Claas
    Jacob, Daniela
    ENVIRONMENTAL RESEARCH LETTERS, 2014, 9 (03):
  • [4] Role of southern ocean for global climate
    不详
    CLEAN-SOIL AIR WATER, 2008, 36 (03) : 249 - 249
  • [5] THE SOUTHERN-OCEAN AND GLOBAL CLIMATE
    GORDON, AL
    OCEANUS, 1988, 31 (02) : 39 - 46
  • [6] Global warming - Global climate data and models: A reconciliation
    Hansen, JE
    Sato, M
    Ruedy, R
    Lacis, A
    Glascoe, J
    SCIENCE, 1998, 281 (5379) : 930 - 932
  • [7] Ocean Global Warming Impacts on the South America Climate
    da Silva, Renato Ramos
    Haas, Reinaldo
    FRONTIERS IN EARTH SCIENCE, 2016, 4
  • [8] Australian climate extremes at 1.5 °C and 2 °C of global warming
    King, Andrew D.
    Karoly, David J.
    Henley, Benjamin J.
    NATURE CLIMATE CHANGE, 2017, 7 (06) : 412 - +
  • [9] Australian climate extremes at 1.5 °c and 2 °c of global warming
    King A.D.
    Karoly D.J.
    Henley B.J.
    Nature Climate Change, 2017, 7 (6) : 412 - 416
  • [10] GLOBAL WARMING New climate models forecast a warming surge
    Voosen, Paul
    SCIENCE, 2019, 364 (6437) : 222 - 223