A Facile Hydrothermal Synthesis and Resistive Switching Behavior of α-Fe2O3 Nanowire Arrays

被引:5
|
作者
Yu, Zhiqiang [1 ,2 ,3 ]
Xu, Jiamin [1 ]
Liu, Baosheng [1 ]
Sun, Zijun [1 ]
Huang, Qingnan [1 ]
Ou, Meilian [1 ]
Wang, Qingcheng [1 ]
Jia, Jinhao [1 ]
Kang, Wenbo [1 ]
Xiao, Qingquan [2 ]
Gao, Tinghong [2 ]
Xie, Quan [2 ]
机构
[1] Guangxi Univ Sci & Technol, Fac Elect Engn, Liuzhou 545006, Peoples R China
[2] Guizhou Univ, Inst Adv Optoelect Mat & Technol, Coll Big Data & Informat Engn, Guiyang 550025, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Opt & Elect Informat, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
来源
MOLECULES | 2023年 / 28卷 / 09期
基金
中国国家自然科学基金;
关键词
hydrothermal process; alpha-Fe2O3 nanowire arrays; memory device; nonvolatile; conducting nanofilaments; oxygen vacancies; CORE-SHELL NANOPARTICLES; MECHANISM; MEMORY;
D O I
10.3390/molecules28093835
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A facile hydrothermal process has been developed to synthesize the a-Fe2O3 nanowire arrays with a preferential growth orientation along the [110] direction. The W/a-Fe2O3/FTO memory device with the nonvolatile resistive switching behavior has been achieved. The resistance ratio (R-HRS/R-LRS) of the W/a-Fe2O3/FTO memory device exceeds two orders of magnitude, which can be preserved for more than 10(3)s without obvious decline. Furthermore, the carrier transport properties of the W/a-Fe2O3/FTO memory device are dominated by the Ohmic conduction mechanism in the low resistance state and trap-controlled space-charge-limited current conduction mechanism in the high resistance state, respectively. The partial formation and rupture of conducting nanofilaments modified by the intrinsic oxygen vacancies have been suggested to be responsible for the nonvolatile resistive switching behavior of the W/a-Fe2O3/FTO memory device. This work suggests that the as-prepared a-Fe2O3 nanowire-based W/a-Fe2O3/FTO memory device may be a potential candidate for applications in the next-generation nonvolatile memory devices.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Hydrothermal synthesis of Fe2O3 nanoparticles and their electrochemical application
    Vivekanandan, J.
    Prasath, G. Vijaya
    Selvamurugan, M.
    Usha, K. S.
    Ravi, G.
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2024, 35 (03)
  • [22] Hydrothermal synthesis of Fe2O3 nanoparticles and their electrochemical application
    J. Vivekanandan
    G. Vijaya Prasath
    M. Selvamurugan
    K. S. Usha
    G. Ravi
    Journal of Materials Science: Materials in Electronics, 2024, 35
  • [23] Hydrothermal synthesis and characterization of monodisperse α-Fe2O3 nanocubes
    Liu, Jing
    Wang, Jie
    Sun, Jincheng
    Li, Yaru
    Lu, Feng
    MICRO & NANO LETTERS, 2014, 9 (10): : 746 - 749
  • [24] α-Fe2O3: Hydrothermal Synthesis, Magnetic and Electrochemical Properties
    Ma, Jianmin
    Lian, Jiabiao
    Duan, Xiaochuan
    Liu, Xiaodi
    Zheng, Wenjun
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (24): : 10671 - 10676
  • [25] Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets
    Sadeh Beysen
    Particuology, 2010, 8 (04) : 386 - 389
  • [26] Hydrothermal synthesis and characterization of monodisperse α-Fe2O3 nanoparticles
    Jiao Hua
    Jiao Gengsheng
    MATERIALS LETTERS, 2009, 63 (30) : 2725 - 2727
  • [27] Hydrothermal Synthesis and Magnetic Properties of α-Fe2O3 Polyhedrons
    Tian, Li
    Huang, Kelong
    FUNDAMENTAL OF CHEMICAL ENGINEERING, PTS 1-3, 2011, 233-235 : 3014 - 3017
  • [28] Hydrothermal synthesis of monodisperse α-Fe2O3 hexagonal platelets
    Peng, Dengfeng
    Beysen, Sadeh
    Li, Qiang
    Sun, Yanfei
    Yang, Linyu
    PARTICUOLOGY, 2010, 8 (04) : 386 - 389
  • [29] Hydrothermal synthesis and characterization of nanocrystalline γ-Fe2O3 particles
    Chen, DR
    Xu, RR
    JOURNAL OF SOLID STATE CHEMISTRY, 1998, 137 (02) : 185 - 190
  • [30] Hydrothermal Synthesis and Charaction of α-Fe2O3 Mesocrystals and Nanorings
    Deng, Bin
    Li, Qiangguo
    Wang, Cunchang
    ADVANCED MATERIALS, PTS 1-4, 2011, 239-242 : 886 - 890