Van der Waals Epitaxy of HgCdTe Thin Films for Flexible Infrared Optoelectronics

被引:8
|
作者
Pan, Wenwu [1 ,2 ]
Zhang, Zekai [1 ,2 ]
Gu, Renjie [1 ,2 ]
Ma, Shuo [1 ,2 ]
Faraone, Lorenzo [1 ,2 ]
Lei, Wen [1 ,2 ]
机构
[1] Univ Western Australia, Dept Elect Elect & Comp Engn, 35 Stirling Highway, Perth, WA 6009, Australia
[2] Univ Western Australia, ARC Ctr Excellence Transformat Meta Opt Syst TMOS, 35 Stirling Highway, Perth, WA 6009, Australia
来源
ADVANCED MATERIALS INTERFACES | 2023年 / 10卷 / 04期
基金
澳大利亚研究理事会;
关键词
flexible devices; HgCdTe; infrared optoelectronics; layer lift-off; mica; molecular beam epitaxy; van der Waals epitaxy; ALTERNATIVE SUBSTRATE; GROWTH; GASB; TEMPERATURE; MICA;
D O I
10.1002/admi.202201932
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Van der Waals epitaxial (vdW) growth of semiconductor thin films on 2D layered substrates has recently attracted considerable attention since it provides a potential pathway for realizing monolithically integrated devices and flexible devices. In this work, direct growth of epitaxial HgCdTe (111) thin films on 2D layered transparent mica substrates is achieved via molecular beam epitaxy. The full width at half maximum of the omega-mode X-ray diffraction peak is measured to be around 306 arc sec. Mid-wave infrared photoconductors based on the as-grown HgCdTe thin films have been demonstrated and the self-heating effect has been evaluated. A peak responsivity at the wavelength of around 3500 nm is measured to be about 110 V W-1 at 80 K and 8 V W-1 at room temperature under a bias of 25 V cm(-1). Twinning defects are observed, limiting the crystallinity and mobility-lifetime product in HgCdTe/mica. Benefiting from the vdW epitaxial growth, an etch-free layer transfer process for lifting off the HgCdTe from the mica substrate has been demonstrated, leading to large area free-standing HgCdTe thin films.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Van der Waals epitaxy of metal dihalide
    Univ of Tokyo, Tokyo, Japan
    Appl Surf Sci, (33-37):
  • [32] Van der Waals epitaxy of metal dihalide
    Ueno, T
    Yamamoto, H
    Saiki, K
    Koma, A
    APPLIED SURFACE SCIENCE, 1997, 113 : 33 - 37
  • [33] Van der Waals epitaxy and composition control of layered SnSxSe2−x alloy thin films
    Joshua J. Fox
    Xiaotian Zhang
    Zakaria Y. Al Balushi
    Mikhail Chubarov
    Azimkhan Kozhakhmetov
    Joan M. Redwing
    Journal of Materials Research, 2020, 35 : 1386 - 1396
  • [34] Highly flexible van der Waals thin films from direct hetero-epitaxial growth
    Chen, Kuan-Hung
    Hsiang, Cheng-Chih
    Yeh, Yu-Cheng
    Wu, Chia-Yi
    Huang, Chang-Hsun
    Chen, Wei-Chih
    Dzeng, Yi-Chung
    Yu, Wen-Yueh
    Chen, Chi
    Chou, Yi-Chia
    MATERIALS TODAY NANO, 2025, 29
  • [35] Direct growth of flexible GaN film via van der Waals epitaxy on mica
    Chang, Y. -W.
    Yang, W. -C.
    Lo, W. -R.
    Lo, Z. -X.
    Ma, C. -H.
    Chu, Y. -H.
    Chou, Y. -C.
    MATERIALS TODAY CHEMISTRY, 2022, 26
  • [36] Van der Waals Epitaxy and Photoresponse of Hexagonal Tellurium Nanoplates on Flexible Mica Sheets
    Wang, Qisheng
    Safdar, Muhammad
    Xu, Kai
    Mirza, Misbah
    Wang, Zhenxing
    He, Jun
    ACS NANO, 2014, 8 (07) : 7497 - 7505
  • [37] Growth modes of organic semiconductor thin films using organic molecular beam deposition: epitaxy, van der Waals epitaxy, and quasi-epitaxy
    Princeton Univ, Princeton, United States
    Supramol Sci, 1-2 (127-139):
  • [38] Van der Waals Multilayered Films: Wafer-Scale Synthesis and Applications in Electronics and Optoelectronics
    Yun, Seok Joon
    Ko, Hayoung
    Park, Sunny
    Lee, Byung Hoon
    Kim, Nahun
    Duong, Hai Phuong
    Lee, Yeojin
    Kim, Soo Min
    Kim, Ki Kang
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)
  • [39] Growth modes of organic semiconductor thin films using organic molecular beam deposition: epitaxy, van der Waals epitaxy, and quasi-epitaxy
    Forrest, SR
    Burrows, PE
    SUPRAMOLECULAR SCIENCE, 1997, 4 (1-2): : 127 - 139
  • [40] Novel optoelectronics and nanophotonics based on van der Waals materials
    Liu, Chang-Hua
    Chang, Tian-Yun
    Chen, Po-Liang
    Li, Wei-Qing
    Chen, Yueyang
    Zheng, Jiajiu
    Majumdar, Arka
    2D PHOTONIC MATERIALS AND DEVICES III, 2020, 11282