Multi-Arm Robot Task Planning for Fruit Harvesting Using Multi-Agent Reinforcement Learning

被引:2
|
作者
Li, Tao [1 ]
Xie, Feng [1 ]
Qiu, Quan [2 ]
Feng, Qingchun [1 ]
机构
[1] Beijing Acad Agr & Forestry Sci, Intelligent Equipment Res Ctr, Beijing 100097, Peoples R China
[2] Beijing Inst Petrochem Technol, BIPT Acad Artificial Intelligence, Beijing 102627, Peoples R China
关键词
TECHNOLOGY;
D O I
10.1109/IROS55552.2023.10341822
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The emergence of harvesting robotics offers a promising solution to the issue of limited agricultural labor resources and the increasing demand for fruits. Despite notable advancements in the field of harvesting robotics, the utilization of such technology in orchards is still limited. The key challenge for harvesting robots is to improve the operational efficiency. Taking into account inner-arm conflicts, couplings of DoFs, and the dynamic tasks, we propose a task planning strategy for a harvesting robot with four arms in this paper. The proposed method employs a Markov game framework to formulate the four-arm robotic harvesting task, which avoids the computational complexity of solving an NP-hard scheduling problem. Furthermore, a multi-agent reinforcement learning (MARL) structure with a fully centralized collaboration protocol is used to train a MARL-based task planning network. Several simulations and orchard experiments are conducted to validate the effectiveness of the proposed method for a multi-arm harvesting robot in comparison with the existing method.
引用
收藏
页码:4176 / 4183
页数:8
相关论文
共 50 条
  • [41] Leveraging Expert Demonstrations in Robot Cooperation with Multi-Agent Reinforcement Learning
    Zhang, Zhaolong
    Li, Yihui
    Rojas, Juan
    Guan, Yisheng
    [J]. INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2021, PT II, 2021, 13014 : 211 - 222
  • [42] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Jana, Meghdeep
    Vachhani, Leena
    Sinha, Arpita
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT ROBOTICS AND APPLICATIONS, 2022, 6 (04) : 724 - 745
  • [43] The Dynamics of Multi-Agent Reinforcement Learning
    Dickens, Luke
    Broda, Krysia
    Russo, Alessandra
    [J]. ECAI 2010 - 19TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2010, 215 : 367 - 372
  • [44] Hierarchical multi-agent reinforcement learning
    Ghavamzadeh, Mohammad
    Mahadevan, Sridhar
    Makar, Rajbala
    [J]. AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2006, 13 (02) : 197 - 229
  • [45] Partitioning in multi-agent reinforcement learning
    Sun, R
    Peterson, T
    [J]. FROM ANIMALS TO ANIMATS 6, 2000, : 325 - 332
  • [46] Multi-Agent Reinforcement Learning for Microgrids
    Dimeas, A. L.
    Hatziargyriou, N. D.
    [J]. IEEE POWER AND ENERGY SOCIETY GENERAL MEETING 2010, 2010,
  • [47] Multi-agent Exploration with Reinforcement Learning
    Sygkounas, Alkis
    Tsipianitis, Dimitris
    Nikolakopoulos, George
    Bechlioulis, Charalampos P.
    [J]. 2022 30TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2022, : 630 - 635
  • [48] A deep reinforcement learning approach for multi-agent mobile robot patrolling
    Meghdeep Jana
    Leena Vachhani
    Arpita Sinha
    [J]. International Journal of Intelligent Robotics and Applications, 2022, 6 : 724 - 745
  • [49] Multi-Agent/Robot Deep Reinforcement Learning with Macro-Actions
    Xiao, Yuchen
    Hoffman, Joshua
    Xia, Tian
    Amato, Christopher
    [J]. THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 13965 - 13966
  • [50] Distributed Multi-Agent Reinforcement Learning and Its application to Robot Soccer
    Fan, Bo
    Pu, Jiexin
    [J]. 2008 INTERNATIONAL WORKSHOP ON EDUCATION TECHNOLOGY AND TRAINING AND 2008 INTERNATIONAL WORKSHOP ON GEOSCIENCE AND REMOTE SENSING, VOL 1, PROCEEDINGS, 2009, : 667 - 671