Early detection of tool wear in electromechanical broaching machines by monitoring main stroke servomotors

被引:12
|
作者
Aldekoa, Inigo [1 ]
del Olmo, Ander [1 ]
Sastoque-Pinilla, Leonardo [1 ,2 ]
Sendino-Mouliet, Sara [1 ,2 ]
Lopez-Novoa, Unai [3 ]
de Lacalle, Luis Norberto Lopez [1 ,2 ]
机构
[1] Univ Basque Country UPV EHU, Adv Mfg Ctr Aeronaut CFAA, Biscay Sci & Technol Pk,Ed202, Zamudio 48017, Biscay, Spain
[2] Univ Basque Country UPV EHU, Dept Mech Engn, Torres Quevedo Sq, Bilbao 48013, Biscay, Spain
[3] Univ Basque Country UPV EHU, Dept Comp Languages & Syst, Rafael Moreno St 2-3, Bilbao 48013, Biscay, Spain
基金
欧盟地平线“2020”;
关键词
Broaching process; Process monitoring; Tool wear estimation; Sensorless approach; SURFACE-ROUGHNESS; INCONEL; 718; CLASSIFICATION; MACHINABILITY; REGRESSION;
D O I
10.1016/j.ymssp.2023.110773
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper aims to provide researchers and engineers with evidence that sensorless machine variable monitoring can achieve tool wear monitoring in broaching in real production environments, reducing production errors, enhancing product quality, and facilitating zero defect manufacturing. Additionally, broaching plays a crucial role in improving the quality of manufacturing products and processes. These aspects are especially pertinent in aeronautical manufacturing, which serves as the experimental case in this study. The research presents findings that establish a correlation between the variables of a broaching machine's servomotors and the condition of the broaching tools. The authors propose an effective method for measuring broaching tool wear without external sensors and provide a detailed explanation of the methodology, enabling reproducibility of similar results. The results stem from three trials conducted on an electromechanical vertical broaching machine, utilizing cemented carbide grade broaching tools to broach a superalloy Inconel 718 test piece. The machine data collected facilitated the training of a set of machine learning models, accurately estimating tool wear on the broaches. Each model demonstrates high predictive accuracy, with a coefficient of determination surpassing 0.9.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Growth monitoring as an early detection tool: a systematic review
    Scherdel, Pauline
    Dunkel, Leo
    van Dommelen, Paula
    Goulet, Olivier
    Salaun, Jean-Francois
    Brauner, Raja
    Heude, Barbara
    Chalumeau, Martin
    LANCET DIABETES & ENDOCRINOLOGY, 2016, 4 (05): : 447 - 456
  • [12] MONITORING THE FLANK WEAR USING PIEZOELECTRIC OF ROTATING TOOL OF MAIN CUTTING FORCE IN END MILLING
    Tahir, N. H. M.
    Muhammad, R.
    Ghani, J. A.
    Nuawi, M. Z.
    Haron, C. H. C.
    JURNAL TEKNOLOGI, 2016, 78 (6-10): : 45 - 51
  • [13] Early detection of drilling tool wear by vibration data acquisition and classification
    Simon, Galipothu Dheeraj
    Deivanathan, R.
    MANUFACTURING LETTERS, 2019, 21 : 60 - 65
  • [14] Detection of high frequency magnetic signature for large electrical machines: a monitoring tool
    Boughanmi, Walid
    Roger, Daniel
    PRZEGLAD ELEKTROTECHNICZNY, 2012, 88 (7B): : 1 - 4
  • [15] Machine learning for monitoring and predictive maintenance of cutting tool wear for clean-cut machining machines
    Bonci, Andrea
    Di Biase, Alessandro
    Dragoni, Aldo Franco
    Longhi, Sauro
    Sernani, Paolo
    Zega, Alessandro
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [16] Cutting Tool Wear Monitoring in CNC Machines Based in Spindle-Motor Stray Flux Signals
    Zamudio-Ramirez, Israel
    Alfonso Antonino-Daviu, Jose
    Trejo-Hernandez, Miguel
    Alfredo Osornio-Rios, Roque
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2022, 18 (05) : 3267 - 3275
  • [17] Automated Detection of Facial Droop: MI/Al Based Tool for Early Detection of Stroke
    McGuffey, Connor J.
    Singh, Ishmeet
    Yilmaz, Alper
    Gulati, Deepak
    STROKE, 2024, 55
  • [18] Methodology for Tool Wear Detection in CNC Machines Based on Fusion Flux Current of Motor and Image Workpieces
    Diaz-Saldana, Geovanni
    Osornio-Rios, Roque Alfredo
    Zamudio-Ramirez, Israel
    Cruz-Albarran, Irving Armando
    Trejo-Hernandez, Miguel
    Antonino-Daviu, Jose Alfonso
    MACHINES, 2023, 11 (04)
  • [19] Hybrid data-driven and model-informed online tool wear detection in milling machines
    Yang, Qian
    Pattipati, Krishna R.
    Awasthi, Utsav
    Bollas, George M.
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 63 : 329 - 343
  • [20] Process monitoring with object detection automated tool wear measurement in robotguided drag finishing
    Prozessüberwachung durch objekterkennung automatisiertewerkzeug-verschleißmessung beim robotergeführten gleitschleifen
    Kopp, Marco (kopp@iwf.tu-berlin.de), 1600, VDI Fachmedien GmBH & Co. KG (110): : 608 - 612