BacWGSpipe: A Snakemake Workflow for a Complete Analysis of Bacterial Whole-Genome Sequencing Data

被引:0
|
作者
Wang, Weixin [1 ]
Li, Xiangcheng [1 ]
Lu, Yewei [1 ]
机构
[1] Key Lab Precis Med Diag & Monitoring Res Zhejiang, Hangzhou, Peoples R China
关键词
bacteria; bioinformatics; genomics; pipeline; CLASSIFICATION; VIRULENCE; TOOL;
D O I
10.1109/ICBCB57893.2023.10246579
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Whole-genome sequencing (WGS) provides a comprehensive view of the bacterial genome, enabling the identification of genetic determinants associated with antibiotic resistance, virulence, and other key clinical traits. Translating WGS data into the clinic requires a diverse collection of bioinformatics tools. Effectively using these analysis tools in a scalable and reproducible way can be challenging, especially for non-experts. We have developed the BacWGSpipe, an automated, scalable, reproducible, and open-source framework for bacterial genomics using WGS data from Illumina, PacBio and Nanopore platforms. BacWGSpipe combines some state-of-the-art tools to take genomic analysis from raw sequencing data through quality control, de novo genome assembly, genotyping, gene annotation and functional analysis, antimicrobial resistance (AMR), virulence and mobile genetic elements profiling, in addition to pangenome analysis, phylogenetic reconstruction and single-nucleotide polymorphism (SNP) variant calling. Once the analysis is finished, BacWGSpipe generates an interactive weblike html report. Using Snakemake and Conda, BacWGSpipe can be easily installed to any computation environment.
引用
收藏
页码:26 / 31
页数:6
相关论文
共 50 条
  • [21] msPIPE: a pipeline for the analysis and visualization of whole-genome bisulfite sequencing data
    Heesun Kim
    Mikang Sim
    Nayoung Park
    Kisang Kwon
    Junyoung Kim
    Jaebum Kim
    BMC Bioinformatics, 23
  • [22] msPIPE: a pipeline for the analysis and visualization of whole-genome bisulfite sequencing data
    Kim, Heesun
    Sim, Mikang
    Park, Nayoung
    Kwon, Kisang
    Kim, Junyoung
    Kim, Jaebum
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [23] Whole-genome sequencing and Mycobacterium tuberculosis: Challenges in sample preparation and sequencing data analysis
    Dohal, Matus
    Porvaznik, Igor
    Prso, Kristian
    Rasmussen, Erik Michael
    Solovic, Ivan
    Mokry, Juraj
    TUBERCULOSIS, 2020, 123
  • [24] Fitting whole-genome sequencing analysis for metastasis
    Julia Simundza
    Nature Cancer, 2021, 2 : 1290 - 1290
  • [25] Fitting whole-genome sequencing analysis for metastasis
    Simundza, Julia
    NATURE CANCER, 2021, 2 (12) : 1290 - 1290
  • [26] Whole-genome sequencing analysis of the cardiometabolic proteome
    Gilly, Arthur
    Park, Young-Chan
    Png, Grace
    Barysenka, Andrei
    Fischer, Iris
    Bjornland, Thea
    Southam, Lorraine
    Suveges, Daniel
    Neumeyer, Sonja
    Rayner, N. William
    Tsafantakis, Emmanouil
    Karaleftheri, Maria
    Dedoussis, George
    Zeggini, Eleftheria
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [27] Whole-genome sequencing analysis of brain tumors
    Suzuki, Hiromichi
    Nakashima, Takuma
    Funakoshi, Yusuke
    Kanamori, Masayuki
    Shibahara, Ichiyo
    Suzuki, Tomonari
    Kinoshita, Manabu
    Sonoda, Yukihiko
    Arakawa, Yoshiki
    Nagane, Motoo
    Tanaka, Shota
    Ishida, Joji
    Saito, Ryuta
    Hanaya, Ryosuke
    Yoshimoto, Koji
    Narita, Yoshitaka
    CANCER SCIENCE, 2025, 116 : 626 - 626
  • [28] Whole-genome sequencing analysis of the cardiometabolic proteome
    Arthur Gilly
    Young-Chan Park
    Grace Png
    Andrei Barysenka
    Iris Fischer
    Thea Bjørnland
    Lorraine Southam
    Daniel Suveges
    Sonja Neumeyer
    N. William Rayner
    Emmanouil Tsafantakis
    Maria Karaleftheri
    George Dedoussis
    Eleftheria Zeggini
    Nature Communications, 11
  • [29] Discovering missing heritability in whole-genome sequencing data
    Alexander I. Young
    Nature Genetics, 2022, 54 : 224 - 226
  • [30] Discovering missing heritability in whole-genome sequencing data
    Young, Alexander, I
    NATURE GENETICS, 2022, 54 (03) : 224 - 226