On entropy martingale optimal transport theory

被引:0
|
作者
Doldi, Alessandro [1 ]
Frittelli, Marco [2 ]
Gianin, Emanuela Rosazza [3 ]
机构
[1] Univ Firenze, Dipartimento Sci Econ & Impresa DISEI, Via Pandette 9, I-50127 Florence, Italy
[2] Univ Milan, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
[3] Univ Milano Bicocca, Dipartimento Stat & Metodi Quantitat, Via Bicocca degli Arcimboldi 8, I-20126 Milan, Italy
关键词
Martingale optimal transport; Entropy optimal transport; Pricing-hedging duality; Robust finance; Pathwise finance; C61; G13; CONTINGENT CLAIMS; FUNDAMENTAL THEOREM; ARBITRAGE BOUNDS; RISK MEASURES; DUALITY; MAXIMUM; UTILITY; PRICES;
D O I
10.1007/s10203-023-00432-y
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
In this paper, we give an overview of (nonlinear) pricing-hedging duality and of its connection with the theory of entropy martingale optimal transport (EMOT), recently developed, and that of convex risk measures. Similarly to Doldi and Frittelli (Finance Stoch 27(2):255-304, 2023), we here establish a duality result between a convex optimal transport and a utility maximization problem. Differently from Doldi and Frittelli (Finance Stoch 27(2):255-304, 2023), we provide here an alternative proof that is based on a compactness assumption. Subhedging and superhedging can be obtained as applications of the duality discussed above. Furthermore, we provide a dual representation of the generalized optimized certainty equivalent associated with indirect utility.
引用
收藏
页码:1 / 42
页数:42
相关论文
共 50 条
  • [1] Entropy martingale optimal transport and nonlinear pricing–hedging duality
    Alessandro Doldi
    Marco Frittelli
    [J]. Finance and Stochastics, 2023, 27 : 255 - 304
  • [2] Entropy martingale optimal transport and nonlinear pricing-hedging duality
    Doldi, Alessandro
    Frittelli, Marco
    [J]. FINANCE AND STOCHASTICS, 2023, 27 (02) : 255 - 304
  • [3] STABILITY OF MARTINGALE OPTIMAL TRANSPORT AND WEAK OPTIMAL TRANSPORT
    Backhoff-Veraguas, J.
    Pammer, G.
    [J]. ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 721 - 752
  • [4] MARTINGALE OPTIMAL TRANSPORT WITH STOPPING
    Bayraktar, Erhan
    Cox, Alexander M. G.
    Stoev, Yavor
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (01) : 417 - 433
  • [5] Martingale optimal transport duality
    Patrick Cheridito
    Matti Kiiski
    David J. Prömel
    H. Mete Soner
    [J]. Mathematische Annalen, 2021, 379 : 1685 - 1712
  • [6] Martingale optimal transport duality
    Cheridito, Patrick
    Kiiski, Matti
    Proemel, David J.
    Soner, H. Mete
    [J]. MATHEMATISCHE ANNALEN, 2021, 379 (3-4) : 1685 - 1712
  • [7] Quantum Martingale Theory and Entropy Production
    Manzano, Gonzalo
    Fazio, Rosario
    Roldan, Edgar
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (22)
  • [8] Martingale optimal transport in the Skorokhod space
    Dolinsky, Yan
    Soner, H. Mete
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2015, 125 (10) : 3893 - 3931
  • [9] On the convergence of the p-optimal martingale measures to the minimal entropy martingale measure
    Santacroce, M
    [J]. STOCHASTIC ANALYSIS AND APPLICATIONS, 2005, 23 (01) : 31 - 54
  • [10] STABILITY OF THE WEAK MARTINGALE OPTIMAL TRANSPORT PROBLEM
    Beiglboeck, Mathias
    Jourdain, Benjamin
    Margheriti, William
    Pammer, Gudmund
    [J]. ANNALS OF APPLIED PROBABILITY, 2023, 33 (6B): : 5382 - 5412