Prediction of intraoperative hypotension during Caesarean delivery with deep learning models from intraoperative non-invasive monitor

被引:0
|
作者
Kim, S. [1 ,10 ]
Kwon, D. [4 ]
Jung, Y. [2 ,15 ]
Lee, H. [3 ,5 ]
Lee, S. [3 ,6 ,15 ]
Kim, T. [7 ]
Kim, K. [8 ]
Yoo, S. [3 ,5 ]
Lee, G. [9 ,11 ,12 ]
Kim, S. [1 ,10 ]
Kim, B. [10 ]
Bae, J. [11 ,12 ]
Lee, G. [9 ,11 ,12 ]
Kim, J. [14 ]
Choi, M. [14 ]
Lim, G. [15 ]
Park, C. [15 ]
Park, J. [15 ]
Jun, J. [15 ]
Yoo, J. [1 ,13 ]
Choi, S. [1 ,13 ]
Lee, M. [1 ,13 ]
Won, H. [1 ,13 ]
Lee, S. [3 ,6 ,15 ]
Chung, J. [1 ,13 ]
机构
[1] Asan Med Ctr, Obstetr & Gynecol, Seoul, South Korea
[2] Korea Univ, Guro Hosp, Coll Med, Obstet & Gynecol, Seoul, South Korea
[3] Seoul Natl Univ Hosp, Seoul, South Korea
[4] Seoul Natl Univ, Interdisciplinary Program Med Informat, Coll Med, Seoul, South Korea
[5] Seoul Natl Univ, Anesthesiol & Pain Med, Coll Med, Seoul, South Korea
[6] Keimyung Univ, Sch Med, Med Informat, Daegu, South Korea
[7] Seoul Natl Univ, Seoul Metropolitan Govt Boramae Med Ctr, Anesthesiol & Pain Med, Seoul, South Korea
[8] Seoul Natl Univ Hosp, Transdisciplinary Dept Med & Adv Technol, Seoul, South Korea
[9] Seoul Natl Univ Hosp, Biomed Res Inst, Seoul, South Korea
[10] Seoul Natl Univ, Seoul Metropolitan Govt Boramae Med Ctr, Obstetr & Gynecol, Seoul, South Korea
[11] Keimyung Univ, Obstetr & Gynecol, Dongsan Med Ctr, Daegu, South Korea
[12] Keimyung Univ, Obstetr & Gynecol, Sch Med, Daegu, South Korea
[13] Univ Ulsan, Coll Med, Obstetr & Gynecol, Seoul, South Korea
[14] Chonnam Natl Univ, Sch Med, Obstetr & Gynecol, Gwangju, South Korea
[15] Seoul Natl Univ, Obstetr & Gynecol, Coll Med, Seoul, South Korea
关键词
D O I
10.1002/uog.26663
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
EP02.48
引用
收藏
页码:119 / 119
页数:1
相关论文
共 50 条
  • [41] CT-based radiomics deep learning signatures for non-invasive prediction of metastatic potential in pheochromocytoma and paraganglioma: a multicohort study
    Zhou, Yongjie
    Zhan, Yuan
    Zhao, Jinhong
    Zhong, Linhua
    Zou, Fei
    Zhu, Xuechao
    Zeng, Qiao
    Nan, Jiayu
    Gong, Lianggeng
    Tan, Yongming
    Liu, Lan
    INSIGHTS INTO IMAGING, 2025, 16 (01):
  • [42] Fluo-Cast-Bright: a deep learning pipeline for the non-invasive prediction of chromatin structure and developmental potential in live oocytes
    Zhang, Xiangyu
    Baumann, Claudia
    de la Fuente, Rabindranath
    COMMUNICATIONS BIOLOGY, 2025, 8 (01)
  • [43] Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning
    Brian L. Hill
    Nadav Rakocz
    Ákos Rudas
    Jeffrey N. Chiang
    Sidong Wang
    Ira Hofer
    Maxime Cannesson
    Eran Halperin
    Scientific Reports, 11
  • [44] Deep learning enables non-invasive estimation of mean pulmonary arterial pressure from PREFUL-MRI
    Zubke, Maximilian
    Wernz, Marius
    Kaireit, Till F.
    Alsady, Tawfik Moher
    Voskrebenzev, Andreas
    Mueller, Robin A.
    Olsson, Karen M.
    Wacker, Frank
    Hoeper, Marius M.
    Vogel-Claussen, Jens
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [45] Imputation of the continuous arterial line blood pressure waveform from non-invasive measurements using deep learning
    Hill, Brian L.
    Rakocz, Nadav
    Rudas, Akos
    Chiang, Jeffrey N.
    Wang, Sidong
    Hofer, Ira
    Cannesson, Maxime
    Halperin, Eran
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [46] Detection of hypotension during spinal anesthesia for caesarean section with continuous non-invasive arterial pressure monitoring and intermittent oscillometric blood pressure monitoring in patients treated with ephedrine or phenylephrine
    Vukotic, Aleksandra
    Jevdjic, Jasna
    Green, David
    Vukotic, Milovan
    Petrovic, Nina
    Janicijevic, Ana
    Nenadic, Irina
    Bobos, Marina
    Culjic, Radmila
    Zagorac, Zagor
    Stevanovic, Predrag
    SRPSKI ARHIV ZA CELOKUPNO LEKARSTVO, 2021, 149 (7-8) : 442 - 448
  • [47] Establishment of non-invasive prediction models for diagnosis of the subtypes and tissue composition of uterine leiomyomas by machine learning using MRI data
    Tamehisa, T.
    Sato, S.
    Sakai, T.
    Maekawa, R.
    Tanabe, M.
    Ito, K.
    Sugino, N.
    HUMAN REPRODUCTION, 2023, 38
  • [48] ESTABLISHMENT OF NON-INVASIVE PREDICTION MODELS FOR DIAGNOSIS OF SUBTYPES AND COLLAGEN CONTENT OF UTERINE LEIOMYOMAS BY MACHINE LEARNING USING MRI DATA
    Tamehisa, Tetsuro
    Sato, Shun
    Tamura, Isao
    Sugino, Norihiro
    FERTILITY AND STERILITY, 2024, 122 (04) : E393 - E393
  • [49] Non-invasive cerebral autoregulation monitoring during paediatric cardiac surgery without cardiopulmonary bypass requiring intraoperative cross-clamping of one of the carotid arteries
    Berger, Rafal
    Ewert, Sebastian
    Boburg, Rodrigo Sandoval
    Neunhoeffer, Felix
    Magunia, Harry
    Lescan, Mario
    Schlensak, Christian
    Mustafi, Migdat
    PERFUSION-UK, 2024,
  • [50] CT-based multimodal deep learning for non-invasive overall survival prediction in advanced hepatocellular carcinoma patients treated with immunotherapy
    Xia, Yujia
    Zhou, Jie
    Xun, Xiaolei
    Zhang, Jin
    Wei, Ting
    Gao, Ruitian
    Reddy, Bobby
    Liu, Chao
    Kim, Geoffrey
    Yu, Zhangsheng
    INSIGHTS INTO IMAGING, 2024, 15 (01):