Prediction of intraoperative hypotension during Caesarean delivery with deep learning models from intraoperative non-invasive monitor

被引:0
|
作者
Kim, S. [1 ,10 ]
Kwon, D. [4 ]
Jung, Y. [2 ,15 ]
Lee, H. [3 ,5 ]
Lee, S. [3 ,6 ,15 ]
Kim, T. [7 ]
Kim, K. [8 ]
Yoo, S. [3 ,5 ]
Lee, G. [9 ,11 ,12 ]
Kim, S. [1 ,10 ]
Kim, B. [10 ]
Bae, J. [11 ,12 ]
Lee, G. [9 ,11 ,12 ]
Kim, J. [14 ]
Choi, M. [14 ]
Lim, G. [15 ]
Park, C. [15 ]
Park, J. [15 ]
Jun, J. [15 ]
Yoo, J. [1 ,13 ]
Choi, S. [1 ,13 ]
Lee, M. [1 ,13 ]
Won, H. [1 ,13 ]
Lee, S. [3 ,6 ,15 ]
Chung, J. [1 ,13 ]
机构
[1] Asan Med Ctr, Obstetr & Gynecol, Seoul, South Korea
[2] Korea Univ, Guro Hosp, Coll Med, Obstet & Gynecol, Seoul, South Korea
[3] Seoul Natl Univ Hosp, Seoul, South Korea
[4] Seoul Natl Univ, Interdisciplinary Program Med Informat, Coll Med, Seoul, South Korea
[5] Seoul Natl Univ, Anesthesiol & Pain Med, Coll Med, Seoul, South Korea
[6] Keimyung Univ, Sch Med, Med Informat, Daegu, South Korea
[7] Seoul Natl Univ, Seoul Metropolitan Govt Boramae Med Ctr, Anesthesiol & Pain Med, Seoul, South Korea
[8] Seoul Natl Univ Hosp, Transdisciplinary Dept Med & Adv Technol, Seoul, South Korea
[9] Seoul Natl Univ Hosp, Biomed Res Inst, Seoul, South Korea
[10] Seoul Natl Univ, Seoul Metropolitan Govt Boramae Med Ctr, Obstetr & Gynecol, Seoul, South Korea
[11] Keimyung Univ, Obstetr & Gynecol, Dongsan Med Ctr, Daegu, South Korea
[12] Keimyung Univ, Obstetr & Gynecol, Sch Med, Daegu, South Korea
[13] Univ Ulsan, Coll Med, Obstetr & Gynecol, Seoul, South Korea
[14] Chonnam Natl Univ, Sch Med, Obstetr & Gynecol, Gwangju, South Korea
[15] Seoul Natl Univ, Obstetr & Gynecol, Coll Med, Seoul, South Korea
关键词
D O I
10.1002/uog.26663
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
EP02.48
引用
收藏
页码:119 / 119
页数:1
相关论文
共 50 条
  • [1] Prediction of intraoperative hypotension using deep learning models based on non-invasive monitoring devices
    Jeong, Heejoon
    Kim, Donghee
    Kim, Dong Won
    Baek, Seungho
    Lee, Hyung-Chul
    Kim, Yusung
    Ahn, Hyun Joo
    JOURNAL OF CLINICAL MONITORING AND COMPUTING, 2024, 38 (06) : 1357 - 1365
  • [2] Frequency Domain Deep Learning With Non-Invasive Features for Intraoperative Hypotension Prediction
    Moon, Jeong-Hyeon
    Lee, Garam
    Lee, Seung Mi
    Ryu, Jiho
    Kim, Dokyoon
    Sohn, Kyung-Ah
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (10) : 5718 - 5728
  • [3] Deep learning models for the prediction of intraoperative hypotension
    Lee, Solam
    Lee, Hyung-Chul
    Chu, Yu Seong
    Song, Seung Woo
    Ahn, Gyo Jin
    Lee, Hunju
    Yang, Sejung
    Koh, Sang Baek
    BRITISH JOURNAL OF ANAESTHESIA, 2021, 126 (04) : 808 - 817
  • [4] Non-Invasive Monitoring during Caesarean Delivery: Prevalence of Hypotension and Impact on the Newborn
    Vasile, Francesco
    La Via, Luigi
    Murabito, Paolo
    Tigano, Stefano
    Merola, Federica
    Nicosia, Tiziana
    De Masi, Giuseppe
    Bruni, Andrea
    Garofalo, Eugenio
    Sanfilippo, Filippo
    Theodoraki, Kassiani
    Yang, Chun
    JOURNAL OF CLINICAL MEDICINE, 2023, 12 (23)
  • [5] PREDICTION OF INTRAOPERATIVE HYPOTENSION: LOGISTIC REGRESSION VS DEEP LEARNING METHODS
    Yoon, Soo Bin
    Yhim, Hyung-Been
    Lee, Hyung-Chul
    Hur, Min
    Jung, Chul-Woo
    ANESTHESIA AND ANALGESIA, 2019, 128 : 946 - 946
  • [6] Non-invasive prediction of massive transfusion during surgery using intraoperative hemodynamic monitoring data
    Kwon, Doyun
    Jung, Young Mi
    Lee, Hyung-Chul
    Kim, Tae Kyong
    Kim, Kwangsoo
    Lee, Garam
    Kim, Dokyoon
    Lee, Seung-Bo
    Lee, Seung Mi
    JOURNAL OF BIOMEDICAL INFORMATICS, 2024, 156
  • [7] Intraoperative Hypotension Prediction Based on Features Automatically Generated Within an Interpretable Deep Learning Model
    Hwang, Eugene
    Park, Yong-Seok
    Kim, Jin-Young
    Park, Sung-Hyuk
    Kim, Junetae
    Kim, Sung-Hoon
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 13887 - 13901
  • [8] The predictive ability of non-invasive haemodynamic parameters for hypotension during caesarean section: a prospective observational study
    Yokose, M.
    Mihara, T.
    Sugawara, Y.
    Goto, T.
    ANAESTHESIA, 2015, 70 (05) : 555 - 562
  • [9] The Effect of Intermittent versus Continuous Non-Invasive Blood Pressure Monitoring on the Detection of Intraoperative Hypotension, a Sub-Study
    Wijnberge, Marije
    van der Ster, Bjorn
    Vlaar, Alexander P. J.
    Hollmann, Markus W.
    Geerts, Bart E.
    Veelo, Denise P.
    JOURNAL OF CLINICAL MEDICINE, 2022, 11 (14)
  • [10] Machine learning predicting hypotension in operating room: application of deep neural networks on continuous physiologic waveforms for early prediction of intraoperative hypotension
    Kim, Sungsoo
    Kwon, Sohee
    Bovik, Alan C.
    Markey, Mia K.
    Cannesson, Maxime
    ANESTHESIA AND ANALGESIA, 2023, 136 : 90 - 91