Rarity: discovering rare cell populations from single-cell imaging data
被引:2
|
作者:
Martens, Kaspar
论文数: 0引用数: 0
h-index: 0
机构:
Alan Turing Inst, London NW1 2DB, EnglandAlan Turing Inst, London NW1 2DB, England
Martens, Kaspar
[1
]
Bortolomeazzi, Michele
论文数: 0引用数: 0
h-index: 0
机构:
Francis Crick Inst, London NW1 1AT, England
Kings Coll London, London WC2R 2LS, EnglandAlan Turing Inst, London NW1 2DB, England
Bortolomeazzi, Michele
[2
,3
]
论文数: 引用数:
h-index:
机构:
Montorsi, Lucia
[2
,3
]
Spencer, Jo
论文数: 0引用数: 0
h-index: 0
机构:
Kings Coll London, London WC2R 2LS, EnglandAlan Turing Inst, London NW1 2DB, England
Spencer, Jo
[3
]
Ciccarelli, Francesca
论文数: 0引用数: 0
h-index: 0
机构:
Francis Crick Inst, London NW1 1AT, England
Queen Mary Univ London, Barts Canc Inst, Ctr Canc Genom & Computat Biol, Charterhouse Sq, London EC1M 6BQ, EnglandAlan Turing Inst, London NW1 2DB, England
Ciccarelli, Francesca
[2
,4
]
Yau, Christopher
论文数: 0引用数: 0
h-index: 0
机构:
Alan Turing Inst, London NW1 2DB, England
Univ Oxford, John Radcliffe Hosp, Womens Ctr Level 3, Nuffield Dept Womens & Reprod Hlth, Oxford OX3 9DU, EnglandAlan Turing Inst, London NW1 2DB, England
Yau, Christopher
[1
,5
]
机构:
[1] Alan Turing Inst, London NW1 2DB, England
[2] Francis Crick Inst, London NW1 1AT, England
[3] Kings Coll London, London WC2R 2LS, England
[4] Queen Mary Univ London, Barts Canc Inst, Ctr Canc Genom & Computat Biol, Charterhouse Sq, London EC1M 6BQ, England
[5] Univ Oxford, John Radcliffe Hosp, Womens Ctr Level 3, Nuffield Dept Womens & Reprod Hlth, Oxford OX3 9DU, England
Motivation Cell type identification plays an important role in the analysis and interpretation of single-cell data and can be carried out via supervised or unsupervised clustering approaches. Supervised methods are best suited where we can list all cell types and their respective marker genes a priori, while unsupervised clustering algorithms look for groups of cells with similar expression properties. This property permits the identification of both known and unknown cell populations, making unsupervised methods suitable for discovery. Success is dependent on the relative strength of the expression signature of each group as well as the number of cells. Rare cell types therefore present a particular challenge that is magnified when they are defined by differentially expressing a small number of genes.Results Typical unsupervised approaches fail to identify such rare subpopulations, and these cells tend to be absorbed into more prevalent cell types. In order to balance these competing demands, we have developed a novel statistical framework for unsupervised clustering, named Rarity, that enables the discovery process for rare cell types to be more robust, consistent, and interpretable. We achieve this by devising a novel clustering method based on a Bayesian latent variable model in which we assign cells to inferred latent binary on/off expression profiles. This lets us achieve increased sensitivity to rare cell populations while also allowing us to control and interpret potential false positive discoveries. We systematically study the challenges associated with rare cell type identification and demonstrate the utility of Rarity on various IMC datasets.Availability and implementation Implementation of Rarity together with examples is available from the Github repository (https://github.com/kasparmartens/rarity).
机构:The University of Texas MD Anderson Cancer Center,Nicholas E. Navin is at the Department of Genetics and the Department of Bioinformatics and Computational Biology
Nicholas E Navin
Ken Chen
论文数: 0引用数: 0
h-index: 0
机构:The University of Texas MD Anderson Cancer Center,Nicholas E. Navin is at the Department of Genetics and the Department of Bioinformatics and Computational Biology
机构:
Univ Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USAUniv Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
Massarat, Arya R.
Sen, Arko
论文数: 0引用数: 0
h-index: 0
机构:
Salk Inst Biol Studies, Integrat Biol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USAUniv Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
Sen, Arko
Jaureguy, Jeff
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USAUniv Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
Jaureguy, Jeff
Tyndale, Selene T.
论文数: 0引用数: 0
h-index: 0
机构:
Salk Inst Biol Studies, Integrat Biol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USAUniv Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
Tyndale, Selene T.
Fu, Yi
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
Salk Inst Biol Studies, Razavi Newman Integrat Genom & Bioinformat Core, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USAUniv Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
Fu, Yi
Erikson, Galina
论文数: 0引用数: 0
h-index: 0
机构:
Salk Inst Biol Studies, Razavi Newman Integrat Genom & Bioinformat Core, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
Max Planck Inst Immunobiol & Epigenet, Freiburg, GermanyUniv Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA
Erikson, Galina
McVicker, Graham
论文数: 0引用数: 0
h-index: 0
机构:
Salk Inst Biol Studies, Integrat Biol Lab, 10010 N Torrey Pines Rd, La Jolla, CA 92037 USA
Univ Calif San Diego, Dept Cellular & Mol Med, 9500 Gilman Dr, La Jolla, CA 92093 USAUniv Calif San Diego, Bioinformat & Syst Biol Grad Program, 9500 Gilman Dr, La Jolla, CA 92093 USA