Extensible benchmarking of methods that identify and quantify polyadenylation sites from RNA-seq data

被引:5
|
作者
Bryce-Smith, Sam [1 ]
Burri, Dominik [2 ,3 ]
Gazzara, Matthew R. [4 ]
Herrmann, Christina J. [2 ,3 ]
Danecka, Weronika [5 ]
Fitzsimmons, Christina M. [6 ]
Wan, Yuk Kei [7 ,8 ]
Zhuang, Farica [9 ]
Fansler, Mervin M. [10 ,11 ]
Fernandez, Jose M. [12 ,13 ]
Ferret, Meritxell [12 ,13 ]
Gonzalez-Uriarte, Asier [12 ,13 ]
Haynes, Samuel [5 ]
Herdman, Chelsea [14 ]
Kanitz, Alexander [2 ,3 ]
Katsantoni, Maria [2 ,3 ]
Marini, Federico [15 ]
McDonnel, Euan [16 ]
Nicolet, Ben [17 ,18 ]
Poon, Chi-Lam [19 ]
Rot, Gregor [3 ,20 ]
Scharfen, Leonard [21 ]
Wu, Pin-Jou [22 ]
Yoon, Yoseop [23 ]
Barash, Yoseph [4 ,9 ]
Zavolan, Mihaela [2 ,3 ]
机构
[1] UCL, UCL Queen Sq Inst Neurol, Dept Neuromuscular Dis, UCL Queen Sq Motor Neuron Dis Ctr, London, England
[2] Univ Basel, Biozentrum, Basel, Switzerland
[3] Swiss Inst Bioinformat, Lausanne, Switzerland
[4] Univ Penn, Perelman Sch Med, Dept Genet, Philadelphia, PA 19104 USA
[5] Univ Edinburgh, Inst Cell Biol, Sch Biol Sci, Edinburgh EH9 3FF, Midlothian, Scotland
[6] NCI, Lab Cell Biol, Ctr Canc Res, NIH, Bethesda, MD 20892 USA
[7] Genome Inst Singapore, Buona Vista 138672, Singapore
[8] Natl Univ Singapore, Yong Loo Lin Sch Med, Kent Ridge 119228, Singapore
[9] Univ Penn, Sch Engn, Dept Comp & Informat Sci, Philadelphia, PA 19104 USA
[10] Weill Cornell Grad Studies, Triinst Program Computat Biol & Med, New York, NY 10065 USA
[11] MSKCC, Sloan Kettering Inst, Canc Biol & Genet, New York, NY 10065 USA
[12] Barcelona Supercomp Ctr, Barcelona, Spain
[13] Spanish Natl Bioinformat Inst INB, ELIXIR ES, Madrid, Spain
[14] Univ Utah, Dept Neurobiol, Salt Lake City, UT 84132 USA
[15] Johannes Gutenberg Univ Mainz, Univ Med Ctr, Inst Med Biostat Epidemiol & Informat IMBEI, Mainz, Germany
[16] Univ Leeds, Leeds Inst Data Analyt, Sch Mol & Cellular Biol, Leeds LS2 9NL, England
[17] Univ Amsterdam, Dept Hematopoiesis, Landsteiner Lab, Sanquin Res,Amsterdam UMC, Amsterdam, Netherlands
[18] Oncode Inst, Utrecht, Netherlands
[19] Weill Cornell Med, Grad Sch Med Sci, New York, NY 10065 USA
[20] Univ Zurich, Inst Mol Life Sci, Zurich, Switzerland
[21] Yale Univ, Dept Mol Biophys & Biochem, New Haven, CT 06520 USA
[22] Univ Tubingen, Ctr Plant Mol Biol ZMBP, Tubingen, Germany
[23] Univ Calif Irvine, Sch Med, Dept Microbiol & Mol Genet, Irvine, CA 92617 USA
基金
欧盟地平线“2020”; 瑞士国家科学基金会; 美国国家卫生研究院;
关键词
benchmarking; (alternative) polyadenylation; bioinformatics; RNA-seq; community initiative; GENOME-WIDE ANALYSIS; ALTERNATIVE POLYADENYLATION; CLEAVAGE; EXPRESSION; REVEALS; GENES; ENDS;
D O I
10.1261/rna.079849.123
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The tremendous rate with which data is generated and analysis methods emerge makes it increasingly difficult to keep track of their domain of applicability, assumptions, limitations, and consequently, of the efficacy and precision with which they solve specific tasks. Therefore, there is an increasing need for benchmarks, and for the provision of infrastructure for continuous method evaluation. APAeval is an international community effort, organized by the RNA Society in 2021, to benchmark tools for the identification and quantification of the usage of alternative polyadenylation (APA) sites from short-read, bulk RNA-sequencing (RNA-seq) data. Here, we reviewed 17 tools and benchmarked eight on their ability to perform APA identification and quantification, using a comprehensive set of RNA-seq experiments comprising real, synthetic, and matched 3 '-end sequencing data. To support continuous benchmarking, we have incorporated the results into the OpenEBench online platform, which allows for continuous extension of the set of methods, metrics, and challenges. We envisage that our analyses will assist researchers in selecting the appropriate tools for their studies, while the containers and reproducible workflows could easily be deployed and extended to evaluate new methods or data sets.
引用
收藏
页码:1839 / 1855
页数:17
相关论文
共 50 条
  • [11] compcodeR-an R package for benchmarking differential expression methods for RNA-seq data
    Soneson, Charlotte
    BIOINFORMATICS, 2014, 30 (17) : 2517 - 2518
  • [12] Polyadenylation sites and their characteristics in the genome of channel catfish (Ictalurus punctatus) as revealed by using RNA-Seq data
    Tan, Suxu
    Wang, Wenwen
    Zhou, Tao
    Yang, Yujia
    Gao, Dongya
    Dunham, Rex
    Liu, Zhanjiang
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS, 2019, 30 : 248 - 255
  • [13] QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data
    Kevin C. H. Ha
    Benjamin J. Blencowe
    Quaid Morris
    Genome Biology, 19
  • [14] QAPA: a new method for the systematic analysis of alternative polyadenylation from RNA-seq data
    Ha, Kevin C. H.
    Blencowe, Benjamin J.
    Morris, Quaid
    GENOME BIOLOGY, 2018, 19
  • [15] Benchmarking RNA-Seq Quantification Tools
    Chandramohan, Raghu
    Wu, Po-Yen
    Phan, John H.
    Wang, May D.
    2013 35TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2013, : 647 - 650
  • [16] Comparison of normalization methods for RNA-Seq data
    Aghababazadeh, Farnoosh A.
    Li, Qian
    Fridley, Brooke L.
    GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 684 - 684
  • [17] Benchmarking RNA-seq differential expression analysis methods using spike-in and simulation data
    Baik, Bukyung
    Yoon, Sora
    Nam, Dougu
    PLOS ONE, 2020, 15 (04):
  • [18] scDAPA: detection and visualization of dynamic alternative polyadenylation from single cell RNA-seq data
    Ye, Congting
    Zhou, Qian
    Wu, Xiaohui
    Yu, Chen
    Ji, Guoli
    Saban, Daniel R.
    Li, Qingshun Q.
    BIOINFORMATICS, 2020, 36 (04) : 1262 - 1264
  • [19] Approaches for sRNA Analysis of Human RNA-Seq Data: Comparison, Benchmarking
    Bezuglov, Vitalik
    Stupnikov, Alexey
    Skakov, Ivan
    Shtratnikova, Victoria
    Pilsner, J. Richard
    Suvorov, Alexander
    Sergeyev, Oleg
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (04)
  • [20] Benchmarking computational methods for B-cell receptor reconstruction from single-cell RNA-seq data
    Andreani, Tommaso
    Slot, Linda M.
    Gabillard, Samuel
    Struebing, Carsten
    Reimertz, Claus
    Yaligara, Veeranagouda
    Bakker, Aleida M.
    Olfati-Saber, Reza
    Toes, Rene E. M.
    Scherer, Hans U.
    Auge, Franck
    Simaite, Deimante
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (03)