Dahlberg degeneracy for homogeneous Besov and Triebel-Lizorkin spaces

被引:0
|
作者
Bourdaud, Gerard [1 ,2 ]
Moussai, Madani [3 ,4 ]
机构
[1] Univ Paris Cite, Paris, France
[2] Sorbonne Univ, CNRS, IMJ PRG, Paris, France
[3] Univ Msila, Fac Math & Comp Sci, Lab Funct Anal & Geometry Spaces, Msila 28000, Algeria
[4] Univ Msila, Fac Math andComputer Sci, Lab Funct Anal & Geometry Spaces, POB 166 Ichebilia, Msila 28000, Algeria
关键词
composition operators; homogeneous Besov-Triebel-Lizorkin spaces; realizations; COMPOSITION OPERATORS; FUNCTIONAL-CALCULUS; SUPERPOSITION; REALIZATIONS;
D O I
10.1002/mana.202300117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the composition operators T-f : g bar right arrow f og acting on the real-valued homogeneous Besov or Triebel-Lizorkin spaces, realized as dilation invariant subspaces of S'(R-n), denoted as u(p,q)(s) (R-n). If s > 1 + (1/p) and s not equal n/p, then any function f : R -> R acting by composition on u(p,q)(s) (R-n) is necessarily linear. The above conditions are optimal: (i) in case = n/p, 0 < q <= 1(Besov space), 0 < p <= 1(Triebel-Lizorkin space), u(p,q)(s)(R-n) is a quasi-Banach algebra for thepointwise product, (ii) in case 1 < s <1+(1/p),1< p < infinity, 1 <= q <= infinity, any function such that f ''' is a finite measure, and f(0) = 0, acts by composition on u(p,q)(s)(R-n).
引用
收藏
页码:878 / 894
页数:17
相关论文
共 50 条