Dependent tasks offloading in mobile edge computing: A multi-objective evolutionary optimization strategy

被引:11
|
作者
Gong, Yanqi [1 ,2 ]
Bian, Kun
Hao, Fei [1 ,2 ]
Sun, Yifei [3 ]
Wu, Yulei [4 ]
机构
[1] Minist Educ, Key Lab Modern Teaching Technol, Xian 710062, Peoples R China
[2] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
[3] Shaanxi Normal Univ, Sch Phys & Informat Technol, Xian 710119, Peoples R China
[4] Univ Exeter, Fac Environm Sci & Econ, Dept Comp Sci, Exeter EX4 4QF, England
基金
中国国家自然科学基金;
关键词
Dependent task offloading; Mobile edge computing; Multi-objective optimization; Evolutionary computation; Cloud-edge-end collaborative computing; ALLOCATION; INTERNET; AUCTION; MOEA/D; IOT;
D O I
10.1016/j.future.2023.06.015
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Due to the proliferation of applications such as virtual reality and online games with high real-time requirements, Mobile Edge Computing (MEC) has become a promising computing paradigm that can improve user experience and reduce the task offloading latency. The cloud-edge-end collaborative offloading further addresses the problem of insufficient computing resources of edge servers owing to large-scale computing-intensive applications in MEC. However, existing offloading solutions often ignore the important factor of economic cost, making it hard for these solutions to achieve a sustainable cloud-edge-end collaborative computation. To this end, this paper considers a multi-user multi-server, cloud-edge-end collaborative offloading scenario in the presence of dependent offloading tasks for the sake of maximizing rewards and minimizing latency. Each user issues a computing-intensive application consisting of multiple dependent tasks, which are offloaded collaboratively by various computational resources. With the goal of maximizing the yield of offloading for users and server providers, a multi-objective optimization problem of joint task offloading and execution rewards is studied. Technically, a multivariate multi-objective optimization problem with three objectives is modeled. An efficient multi-objective evolutionary optimization algorithm based on MOEA/D is then developed to solve the latency minimization and reward maximization problems. Extensive simulation results verify the effectiveness of the algorithm and illustrate that the proposed algorithm can significantly improve user offloading benefits. In addition, a scalability evaluations of our proposed algorithm is conducted for demonstrating its feasibility in large-scale task offloading scenarios.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页码:314 / 325
页数:12
相关论文
共 50 条
  • [41] Dependent tasks offloading based on particle swarm optimization algorithm in multi-access edge computing
    Ma, Shuyue
    Song, Shudian
    Yang, Lingyu
    Zhao, Jingmei
    Yang, Feng
    Zhai, Linbo
    APPLIED SOFT COMPUTING, 2021, 112
  • [42] Computation Offloading Strategy in Mobile Edge Computing
    Sheng, Jinfang
    Hu, Jie
    Teng, Xiaoyu
    Wang, Bin
    Pan, Xiaoxia
    INFORMATION, 2019, 10 (06)
  • [43] A New Evolutionary Strategy for Pareto Multi-Objective Optimization
    Elbeltagi, E.
    Hegazy, T.
    Grierson, D.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94
  • [44] Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity
    Wei Li
    Shunfu Jin
    The Journal of Supercomputing, 2021, 77 : 12486 - 12507
  • [45] Optimization Strategy of Task Offloading with Wireless and Computing Resource Management in Mobile Edge Computing
    Wu, Xintao
    Gan, Jie
    Chen, Shiyong
    Zhao, Xu
    Wu, Yucheng
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021 (2021):
  • [46] Multi-Objective Resource Allocation for Mobile Edge Computing Systems
    Zhang, Xinyi
    Mao, Yuyi
    Zhang, Jun
    Letaief, Khaled B.
    2017 IEEE 28TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR, AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2017,
  • [47] Performance evaluation and optimization of a task offloading strategy on the mobile edge computing with edge heterogeneity
    Li, Wei
    Jin, Shunfu
    JOURNAL OF SUPERCOMPUTING, 2021, 77 (11): : 12486 - 12507
  • [48] Multi-objective computation offloading for Internet of Vehicles in cloud-edge computing
    Xu, Xiaolong
    Gu, Renhao
    Dai, Fei
    Qi, Lianyong
    Wan, Shaohua
    WIRELESS NETWORKS, 2020, 26 (03) : 1611 - 1629
  • [49] Multi-objective computation offloading for Internet of Vehicles in cloud-edge computing
    Xiaolong Xu
    Renhao Gu
    Fei Dai
    Lianyong Qi
    Shaohua Wan
    Wireless Networks, 2020, 26 : 1611 - 1629
  • [50] A Constrained Multi-objective Computation Offloading Algorithm in the Mobile Cloud Computing Environment
    Liu, Li
    Du, Yuanyuan
    Fan, Qi
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2019, 13 (09) : 4329 - 4348