Yield Prediction for Winter Wheat with Machine Learning Models Using Sentinel-1, Topography, and Weather Data

被引:1
|
作者
Bogdanovski, Oliver Persson [1 ]
Svenningsson, Christoffer [1 ]
Mansson, Simon [2 ]
Oxenstierna, Andreas [3 ]
Sopasakis, Alexandros [1 ]
机构
[1] Lund Univ, Fac Sci, Dept Math, S-22100 Lund, Sweden
[2] Niftitech AB, Hedvig Mollers gata 12, S-22355 Lund, Sweden
[3] T Kartor AB, Olof Mohlins vag 12, S-29162 Kristianstad, Sweden
来源
AGRICULTURE-BASEL | 2023年 / 13卷 / 04期
基金
瑞典研究理事会;
关键词
precision agriculture; Sentinel-1; SAR; machine learning; yield prediction; despeckling; GROWTH;
D O I
10.3390/agriculture13040813
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
We train and compare the performance of two different machine learning algorithms to learn changes in winter wheat production for fields from the southwest of Sweden. As input to these algorithms, we use cloud-penetrating Sentinel-1 polarimetry radar data together with respective field topography and local weather over four different years. We note that all of the input data were freely available. During training, we used information on winter wheat production over the fields of interest which was available from participating farmers. The two machine learning models we trained are the Light Gradient-Boosting Machine and a Feed-forward Neural Network. Our results show that Sentinel-1 data contain valuable information which can be used for training to predict winter wheat yield once two important steps are taken: performing a critical transformation of each pixel in the images to align it to the training data and then following up with despeckling treatment. Using this approach, we were able to achieve a top root mean square error of 0.75 tons per hectare and a top accuracy of 86% using a k-fold method with k=5. More importantly, however, we established that Sentinel-1 data alone are sufficient to predict yield with an average root mean square error of 0.89 tons per hectare, making this method feasible to employ worldwide.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Soya Yield Prediction on a Within-Field Scale Using Machine Learning Models Trained on Sentinel-2 and Soil Data
    Pejak, Branislav
    Lugonja, Predrag
    Antic, Aleksandar
    Panic, Marko
    Pandzic, Milos
    Alexakis, Emmanouil
    Mavrepis, Philip
    Zhou, Naweiluo
    Marko, Oskar
    Crnojevic, Vladimir
    [J]. REMOTE SENSING, 2022, 14 (09)
  • [42] Development of a Technique for Classifying Photovoltaic Panels Using Sentinel-1 and Machine Learning
    Lee, Seong-Hyeok
    Yoon, Dong-Hyeon
    Lee, Seung-kuk
    Oh, Kwan-Young
    Lee, Moung-Jin
    [J]. JOURNAL OF SENSORS, 2022, 2022
  • [43] Interseasonal transfer learning for crop mapping using Sentinel-1 data
    Pandzic, Milos
    Pavlovic, Dejan
    Matavulj, Predrag
    Brdar, Sanja
    Marko, Oskar
    Crnojevic, Vladimir
    Kilibarda, Milan
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2024, 128
  • [44] Crop Water Content of Winter Wheat Revealed with Sentinel-1 and Sentinel-2 Imagery
    Han, Dong
    Liu, Shuaibing
    Du, Ying
    Xie, Xinrui
    Fan, Lingling
    Lei, Lei
    Li, Zhenhong
    Yang, Hao
    Yang, Guijun
    [J]. SENSORS, 2019, 19 (18)
  • [45] EXTENT AND DEPTH OF FLOODING USING SAR SENTINEL-1 AND MACHINE LEARNING ALGORITHMS
    Soria-Ruiz, Jesus
    Fernandez-Ordonez, Y. M.
    Ambrosio-Ambrosio, J. P.
    [J]. IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 2246 - 2249
  • [46] Improving water status prediction of winter wheat using multi-source data with machine learning
    Shi, Bo
    Yuan, Yifan
    Zhuang, Tingxuan
    Xu, Xuan
    Schmidhalter, Urs
    Ata-UI-Karim, Syed Tahir
    Zhao, Ben
    Liu, Xiaojun
    Tian, Yongchao
    Zhu, Yan
    Cao, Weixing
    Cao, Qiang
    [J]. EUROPEAN JOURNAL OF AGRONOMY, 2022, 139
  • [47] Prediction of winter wheat yield at county level in China using ensemble learning
    Zhang, Yuefan
    Wang, Lunche
    Chen, Xinxin
    Liu, Yuting
    Wang, Shaoqiang
    Wang, Lizhe
    [J]. PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2022, 46 (05): : 676 - 696
  • [48] Understanding wheat lodging using multi-temporal Sentinel-1 and Sentinel-2 data
    Chauhan, Sugandh
    Darvishzadeh, Roshanak
    Lu, Yi
    Boschetti, Mirco
    Nelson, Andrew
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 243 (243)
  • [49] Wheat yield prediction using machine learning and advanced sensing techniques
    Pantazi, X. E.
    Moshou, D.
    Alexandridis, T.
    Whetton, R. L.
    Mouazen, A. M.
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2016, 121 : 57 - 65
  • [50] Analysis of Wheat-Yield Prediction Using Machine Learning Models under Climate Change Scenarios
    Iqbal, Nida
    Shahzad, Muhammad Umair
    Sherif, El-Sayed M.
    Tariq, Muhammad Usman
    Rashid, Javed
    Le, Tuan-Vinh
    Ghani, Anwar
    [J]. SUSTAINABILITY, 2024, 16 (16)