Effect of Cr on Microstructure and Properties of WVTaTiCrx Refractory High-Entropy Alloy Laser Cladding

被引:6
|
作者
Xu, Zhaomin [1 ]
Sun, Zhiping [1 ]
Li, Cheng [1 ]
Wang, Zhiming [1 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Mech Engn, Jinan 250353, Peoples R China
关键词
refractory high-entropy alloys; laser cladding; microstructure; mechanical properties; oxidation resistance; STABILITY; PHASE; OXIDATION; SIZE; ZR;
D O I
10.3390/ma16083060
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
WVTaTiCrx (x = 0, 0.25, 0.5, 0.75, 1) refractory high-entropy alloy coatings were prepared on a 42-CrMo steel plate using laser cladding. The purpose of this work is to investigate the effect of the Cr content on the microstructure and properties of the WVTaTiCrx coating. The morphologies and phase compositions of five coatings with different Cr contents were comparatively observed. In addition, the hardness and high-temperature oxidation resistance of the coatings were also analyzed. As a result, with the increase in Cr, the coating grains were more refined. All the coating is mainly composed of the BCC solid-solution phase, which promotes the precipitation of the Laves phase with the increase in Cr. The addition of Cr greatly improves the hardness, high-temperature oxidation resistance and corrosion resistance of the coating. The WVTaTiCr (Cr-1) exhibited superior mechanical properties, especially in terms of its exceptional hardness, high-temperature oxidation resistance and outstanding corrosion resistance. The average hardness of the WVTaTiCr alloy coating reaches 627.36 HV. After 50 h of high-temperature oxidation, the oxide weight of WVTaTiCr increases by 5.12 mg/cm(2), and the oxidation rate is 0.1 mg/(cm(2)center dot h). In 3.5 wt% NaCl solution, the corrosion potential of WVTaTiCr is -0.3198 V, and the corrosion rate is 0.161 mm/a.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Effect of spot type on microstructure and properties of MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by laser cladding
    Wang, Hui-Lin
    Guo, Ya-Xiong
    Lan, Hong-Wei
    Liu, Qi-Bin
    Zhou, Fang
    Surface Technology, 2019, 48 (06): : 130 - 137
  • [2] Microstructure and Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding
    Liu, Hao
    Gao, Qiang
    Man, Jiaxiang
    Li, Xiaojia
    Yang, Haifeng
    Hao, Jingbin
    Zhongguo Jiguang/Chinese Journal of Lasers, 2022, 49 (08):
  • [3] Microstructure and properties of CoCrFeNiSix high-entropy alloy coating by laser cladding
    Tian Z.
    Li X.
    Qin Z.
    Yang X.
    Liu W.
    Zhang P.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2022, 43 (12): : 53 - 63
  • [4] Microstructure and properties of laser cladding CoCrFeNiSix high-entropy alloy coating
    Hao W.-J.
    Sun R.-L.
    Niu W.
    Tan J.-H.
    Li X.-L.
    Surface Technology, 2021, 50 (05): : 87 - 94
  • [5] Microstructure and Properties of CoCrFeNiMnTix High-Entropy Alloy Coated by Laser Cladding
    Ma, Shibang
    Zhang, Congzheng
    Li, Liang
    Yang, Yinhai
    COATINGS, 2024, 14 (05)
  • [6] Microstructure and Properties of CoCrFeMnNiTi, High-Entropy Alloy Coating by Laser Cladding
    Liu Hao
    Gao Qiang
    Man Jiaxiang
    Li Xiaojia
    Yang Haifeng
    Hao Jingbin
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2022, 49 (08):
  • [7] Microstructure Evolution and Properties of Laser Cladding CoCrFeNiTiAlx High-Entropy Alloy Coatings
    Xu, Yiku
    Li, Zhiyuan
    Liu, Jianru
    Chen, Yongnan
    Zhang, Fengying
    Wu, Lei
    Hao, Jianmin
    Liu, Lin
    COATINGS, 2020, 10 (04)
  • [8] Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coating Fabricated by Laser Cladding
    Hao Liu
    Wenpeng Gao
    Jian Liu
    Xiaotong Du
    Xiaojia Li
    Haifeng Yang
    Journal of Materials Engineering and Performance, 2020, 29 : 7170 - 7178
  • [9] Effect of silicon and aluminum on microstructure and properties of laser cladding MoFeCrTiW high-entropy alloy coating
    Zhou, Fang
    Liu, Qibin
    Zheng, Bo
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2015, 27 (11):
  • [10] Microstructure and Properties of Laser Cladding Graphene Reinforced CoCrFeNiTi High-Entropy Alloy
    Qiu, Xingwu
    JOURNAL OF RUSSIAN LASER RESEARCH, 2023, 44 (05) : 590 - 596