The Activity and Stability of Promoted Cu/ZnO/Al2O3 Catalyst for CO2 Hydrogenation to Methanol

被引:1
|
作者
Berahim, Nor Hafizah [1 ,2 ]
Zabidi, Noor Asmawati Mohd [2 ]
Ramli, Raihan Mahirah [3 ]
Suhaimi, Nur Amirah [2 ]
机构
[1] PETRONAS Res Sdn Bhd, Grp Res & Technol, Carbon Capture Utilizat & Storage Dept, Kajang 43000, Selangor, Malaysia
[2] Univ Teknol PETRONAS, Inst Contaminant Management Oil & Gas, Ctr Contaminant Control & Utilizat CenCoU, Dept Fundamental & Appl Sci, Seri Iskandar 32610, Perak, Malaysia
[3] Univ Teknol PETRONAS, Ctr Innovat Nanostruct & Nanodevices COINN, Dept Chem Engn, Seri Iskandar 32610, Perak, Malaysia
关键词
Cu; ZnO; Al2O3; catalyst; methanol synthesis; stability; activity; SULFUR TOLERANCE; CARBON-DIOXIDE; DEACTIVATION; ADSORPTION; INTERFACE; SURFACE; SYNGAS; SITES; SIZE; XPS;
D O I
10.3390/pr11030719
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Cu/ZnO/Al2O3 catalyst with the addition of tri-promoters (Mn/Nb/Zr) was investigated with respect to their catalytic activity and stability in a prolonged reaction duration in methanol synthesis. Spent catalysts were characterized using N-2 adsorption-desorption, FESEM/EDX, TEM, N2O chemisorption, and XPS for their physicochemical properties. The catalyst longevity study was evaluated at two days, seven days, and 14 days at 300 degrees C, 31.25 bar, 2160 mL/g.hr GHSV, and H-2:CO2 at 10:1. The CO2 conversion and methanol yield decreased by about 5.7% and 7.7%, respectively, when the reaction duration was prolonged to 14 days. A slight reduction in catalytic activity under prolonged reaction duration was found due to thermal degradation.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Promoting effect of titanium on Cu/γ-Al2O3 catalyst for CO2 hydrogenation
    Qi, GX
    Zheng, XM
    Fei, JH
    Hou, ZY
    INDIAN JOURNAL OF CHEMISTRY SECTION A-INORGANIC BIO-INORGANIC PHYSICAL THEORETICAL & ANALYTICAL CHEMISTRY, 2001, 40 (06): : 588 - 593
  • [32] The role of copper oxidation state in Cu/ZnO/Al2O3 catalysts in CO2 hydrogenation and methanol productivity
    Dasireddy, Venkata D. B. C.
    Likozar, Blaz
    RENEWABLE ENERGY, 2019, 140 : 452 - 460
  • [33] Effect of In2O3 on the structural properties and catalytic performance of the CuO/ZnO/Al2O3 catalyst in CO2 and CO hydrogenation to methanol
    Sadeghinia, Mohammad
    Rezaei, Mehran
    Kharat, Ali Nemati
    Jorabchi, Majid Namayandeh
    Nematollahi, Behzad
    Zareiekordshouli, Fazlollah
    MOLECULAR CATALYSIS, 2020, 484 (484)
  • [34] Influence of Cu/Al Ratio on the Performance of Carbon-Supported Cu/ZnO/Al2O3 Catalysts for CO2 Hydrogenation to Methanol
    Xie, Zhong
    Hei, Jinpei
    Cheng, Lei
    Li, Jing
    Yin, Xiaojie
    Meng, Sugang
    CATALYSTS, 2023, 13 (05)
  • [35] Correlation between the porosity of γ-Al2O3 and the performance of CuO–ZnO–Al2O3 catalysts for CO2 hydrogenation into methanol
    Nguyen Le-Phuc
    Tri Van Tran
    Phuong Ngo Thuy
    Luong Huu Nguyen
    Thuat Thanh Trinh
    Reaction Kinetics, Mechanisms and Catalysis, 2018, 124 : 171 - 185
  • [36] Direct synthesis of formic acid via CO2 hydrogenation over Cu/ZnO/Al2O3 catalyst
    Chiang, Chao-Lung
    Lin, Kuen-Song
    Chuang, Hui-Wen
    JOURNAL OF CLEANER PRODUCTION, 2018, 172 : 1957 - 1977
  • [37] Influence of the calcination on the activity and stability of the Cu/ZnO/Al2O3 catalyst in liquid phase methanol synthesis
    Zhang, Xiaobing
    Zhong, Li
    Guo, Qihai
    Fan, Hui
    Zheng, Huayan
    Xie, Kechang
    FUEL, 2010, 89 (07) : 1348 - 1352
  • [38] CO2 Hydrogenation to Methanol over La2O3-Promoted CuO/ZnO/Al2O3 Catalysts: A Kinetic and Mechanistic Study
    Kourtelesis, Marios
    Kousi, Kalliopi
    Kondarides, Dimitris, I
    CATALYSTS, 2020, 10 (02)
  • [39] Selective CO2 hydrogenation on the γ-Al2O3 supported bimetallic Co-Cu catalyst
    Yin, Shuxia
    Ge, Qingfeng
    CATALYSIS TODAY, 2012, 194 (01) : 30 - 37
  • [40] Correlation between synthesis pH, structure and Cu/MgO/Al2O3 heterogeneous catalyst activity and selectivity in CO2 hydrogenation to methanol
    Dasireddy, Venkata D. B. C.
    Stefancic, Neja Strah
    Likozar, Blaz
    JOURNAL OF CO2 UTILIZATION, 2018, 28 : 189 - 199