Lasing by Template-Assisted Self-Assembled Quantum Dots

被引:12
|
作者
Aftenieva, Olha [1 ]
Sudzius, Markas [2 ]
Prudnikau, Anatol [3 ]
Adnan, Mohammad [1 ,4 ]
Sarkar, Swagato [1 ]
Lesnyak, Vladimir [3 ]
Leo, Karl [2 ,5 ]
Fery, Andreas [1 ,5 ,6 ]
Koenig, Tobias A. F. [1 ,5 ]
机构
[1] Leibniz Inst Polymer Res Dresden eV, Hohe Str 6, D-01169 Dresden, Germany
[2] Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAPP, D-01069 Dresden, Germany
[3] Tech Univ Dresden, Inst Phys Chem, Zellescher Weg 19, D-01069 Dresden, Germany
[4] Westfalische Wilhelms Univ Munster, Phys Inst, Wilhelm Klemm Str 10, D-48149 Munster, Germany
[5] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[6] Tech Univ Dresden, Chair Phys Chem Polymer Mat, Mommsenstr 4, D-01062 Dresden, Germany
关键词
confinement self-assembly; distributed feedback laser; quantum dots; soft lithography; LASERS; NANOCRYSTALS; FILMS; BEAM; GAIN;
D O I
10.1002/adom.202202226
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Miniaturized laser sources with low threshold power are required for integrated photonic devices. Photostable core/shell nanocrystals are well suited as gain material and their laser properties can be exploited by direct patterning as distributed feedback (DFB) lasers. Here, the 2nd-order DFB resonators tuned to the photoluminescence wavelength of the QDs are used. Soft lithography based on template-assisted colloidal self-assembly enables pattern resolution in the subwavelength range. Combined with the directional Langmuir-Blodgett arrangement, control of the waveguide layer thickness is further achieved. It is shown that a lasing threshold of 5.5 mJ cm(-)(2) is reached by a direct printing method, which can be further reduced by a factor of ten (0.6 mJ cm(-)(2)) at an optimal waveguide thickness. Moreover, it is discussed how one can adjust the DFB geometries to any working wavelength. This colloidal approach offers prospects for applications in bioimaging, biomedical sensing, anti-counterfeiting, or displays.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Optical spectroscopy of self-assembled quantum dots
    Mowbray, D
    Finley, J
    NANO-PHYSICS & BIO-ELECTRONICS: A NEW ODYSSEY, 2002, : 85 - 109
  • [32] Kondo excitons in self-assembled quantum dots
    Govorov, AO
    Karrai, K
    Warburton, RJ
    PHYSICAL REVIEW B, 2003, 67 (24)
  • [33] Spectrum and tunneling in self-assembled quantum dots
    Larkin, I
    Vagov, A
    PHYSICAL REVIEW B, 2003, 67 (11):
  • [34] Spectroscopy of single self-assembled quantum dots
    Zrenner, A
    Findeis, F
    Beham, E
    Markmann, M
    Böhm, G
    Abstreiter, G
    JOURNAL OF LUMINESCENCE, 2000, 87-9 : 35 - 39
  • [35] Spectroscopy of self-assembled quantum dots in ZnSe
    Brown Univ, Providence, United States
    IQEC Int Quantum Electron Conf Proc, (15-16):
  • [36] Single spins in self-assembled quantum dots
    Warburton, Richard J.
    NATURE MATERIALS, 2013, 12 (06) : 483 - 493
  • [37] Cracking self-assembled InAs quantum dots
    Bruls, D. M.
    Vugs, J. W. A. M.
    Koenraad, P. M.
    Skolnick, M. S.
    Hopkinson, M.
    Wolter, J. H.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (Suppl 2): : S205 - S207
  • [38] Long-wavelength lasing from InAs self-assembled quantum dots on (311) B InP
    Nishi, K
    Yamada, M
    Anan, T
    Gomyo, A
    Sugou, S
    APPLIED PHYSICS LETTERS, 1998, 73 (04) : 526 - 528
  • [39] 1.3-μm CW lasing characteristics of self-assembled InGaAs-GaAs quantum dots
    Mukai, K
    Nakata, Y
    Otsubo, K
    Sugawara, M
    Yokoyama, N
    Ishikawa, H
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2000, 36 (04) : 472 - 478
  • [40] Self-assembled quantum dots in a nanowire system for quantum photonics
    Heiss M.
    Fontana Y.
    Gustafsson A.
    Wüst G.
    Magen C.
    O'Regan D.D.
    Luo J.W.
    Ketterer B.
    Conesa-Boj S.
    Kuhlmann A.V.
    Houel J.
    Russo-Averchi E.
    Morante J.R.
    Cantoni M.
    Marzari N.
    Arbiol J.
    Zunger A.
    Warburton R.J.
    Fontcuberta I Morral A.
    Nature Materials, 2013, 12 (5) : 439 - 444