Lasing by Template-Assisted Self-Assembled Quantum Dots

被引:12
|
作者
Aftenieva, Olha [1 ]
Sudzius, Markas [2 ]
Prudnikau, Anatol [3 ]
Adnan, Mohammad [1 ,4 ]
Sarkar, Swagato [1 ]
Lesnyak, Vladimir [3 ]
Leo, Karl [2 ,5 ]
Fery, Andreas [1 ,5 ,6 ]
Koenig, Tobias A. F. [1 ,5 ]
机构
[1] Leibniz Inst Polymer Res Dresden eV, Hohe Str 6, D-01169 Dresden, Germany
[2] Tech Univ Dresden, Dresden Integrated Ctr Appl Phys & Photon Mat IAPP, D-01069 Dresden, Germany
[3] Tech Univ Dresden, Inst Phys Chem, Zellescher Weg 19, D-01069 Dresden, Germany
[4] Westfalische Wilhelms Univ Munster, Phys Inst, Wilhelm Klemm Str 10, D-48149 Munster, Germany
[5] Tech Univ Dresden, Ctr Adv Elect Dresden Cfaed, D-01062 Dresden, Germany
[6] Tech Univ Dresden, Chair Phys Chem Polymer Mat, Mommsenstr 4, D-01062 Dresden, Germany
关键词
confinement self-assembly; distributed feedback laser; quantum dots; soft lithography; LASERS; NANOCRYSTALS; FILMS; BEAM; GAIN;
D O I
10.1002/adom.202202226
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Miniaturized laser sources with low threshold power are required for integrated photonic devices. Photostable core/shell nanocrystals are well suited as gain material and their laser properties can be exploited by direct patterning as distributed feedback (DFB) lasers. Here, the 2nd-order DFB resonators tuned to the photoluminescence wavelength of the QDs are used. Soft lithography based on template-assisted colloidal self-assembly enables pattern resolution in the subwavelength range. Combined with the directional Langmuir-Blodgett arrangement, control of the waveguide layer thickness is further achieved. It is shown that a lasing threshold of 5.5 mJ cm(-)(2) is reached by a direct printing method, which can be further reduced by a factor of ten (0.6 mJ cm(-)(2)) at an optimal waveguide thickness. Moreover, it is discussed how one can adjust the DFB geometries to any working wavelength. This colloidal approach offers prospects for applications in bioimaging, biomedical sensing, anti-counterfeiting, or displays.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Template-assisted self-assembled catalysts for hydroformylation
    Jacobs, Ivo
    Reek, Joost N. H.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [2] Lasing in GaAs/AlGaAs self-assembled quantum dots
    Mano, T.
    Kuroda, T.
    Yamagiwa, M.
    Kido, G.
    Sakoda, K.
    Koguchi, N.
    APPLIED PHYSICS LETTERS, 2006, 89 (18)
  • [3] Template-assisted patterning of nanoscale self-assembled monolayer arrays on surfaces
    Gao, Han
    Gosvami, Nitya N.
    Deng, Jie
    Tan, Le-Shon
    Sander, Melissa S.
    LANGMUIR, 2006, 22 (19) : 8078 - 8082
  • [4] Optical gain and lasing in self-assembled InP/GaInP quantum dots
    Moritz, A
    Wirth, R
    Hangleiter, A
    Kurtenbach, A
    Eberl, K
    APPLIED PHYSICS LETTERS, 1996, 69 (02) : 212 - 214
  • [5] Nanoscale electromechanical properties of template-assisted hierarchical self-assembled cellulose nanofibers
    Calahorra, Yonatan
    Datta, Anuja
    Famelton, James
    Kam, Doron
    Shoseyov, Oded
    Kar-Narayan, Sohini
    NANOSCALE, 2018, 10 (35) : 16812 - 16821
  • [6] Self-assembled quantum dots
    Univ of Nottingham, Nottingham, United Kingdom
    III Vs Rev, 3 (25-30):
  • [7] Lasing characteristics of GaSb/GaAs self-assembled quantum dots embedded in an InGaAs quantum well
    Tatebayashi, J.
    Khoshakhlagh, A.
    Huang, S. H.
    Balakrishnan, G.
    Dawson, L. R.
    Huffaker, D. L.
    APPLIED PHYSICS LETTERS, 2007, 90 (26)
  • [8] An introduction to self-assembled quantum dots
    Riel, B. J.
    AMERICAN JOURNAL OF PHYSICS, 2008, 76 (08) : 750 - 757
  • [9] Composition of self-assembled quantum dots
    Lang, C
    MATERIALS SCIENCE AND TECHNOLOGY, 2003, 19 (04) : 411 - 421
  • [10] Self-assembled semiconductor quantum dots
    Warburton, RJ
    CONTEMPORARY PHYSICS, 2002, 43 (05) : 351 - 364