Estimation of genetic parameters and selection gains for sweet potato using Bayesian inference with a priori information

被引:0
|
作者
Valadares, Nermy Ribeiro [1 ]
Fernandes, Ana Clara Goncalves [2 ]
Rodrigues, Clovis Henrique Oliveira [2 ]
Guedes, Lis Lorena Melucio [2 ]
Magalhaes, Jailson Ramos [2 ]
Alves, Rayane Aguiar [2 ]
Junior, Valter Carvalho de Andrade [3 ]
Azevedo, Alcinei Mistico [2 ]
机构
[1] Inst Fed Norte Minas Gerais, Aracuai, MG, Brazil
[2] Univ Fed Minas Gerais, Inst Ciencias Agr, Ave Univ 1000, BR-39404547 Montes Claros, MG, Brazil
[3] Univ Fed Lavras, Lavras, MG, Brazil
关键词
Ipomoea batatas (L; ) Lam; genetical enhancement; bayes' theorem; biometry; experimental statistics; CLONES; POPULATION; GENOTYPES; QUALITY; TRAITS; YIELD;
D O I
10.4025/actasciagron.v45i1.56160
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The selection of superior sweet potato genotypes using Bayesian inference is an important strategy for genetic improvement. Sweet potatoes are of social and economic importance, being the material for ethanol production. The estimation of variance components and genetic parameters using Bayesian inference is more accurate than that using the frequently used statistical methodologies. This is because the former allows for using a priori knowledge from previous research. Therefore, the present study estimated genetic parameters and selection gains, predicted genetic values, and selected sweet potato genotypes using a Bayesian approach with a priori information. Root shape, soil insect resistance, and root and shoot productivity of 24 sweet potato genotypes were measured. Heritability, genotypic variation coefficient, residual variation coefficient, relative variation index, and selection gains direct, indirect and simultaneous were estimated, and the data were analyzed using Bayesian inference. Data from 11 experiments were used to obtain a priori information. Bayesian inference was a useful tool for decision-making, and significant genetic gains could be achieved with the selection of the evaluated genotypes. Root shape, soil insect resistance, commercial root productivity, and total root productivity showed higher heritability values. Clones UFVJM06, UFVJM40, UFVJM54, UFVJM09, and CAMBRAIA can be used as parents in future breeding programs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Prediction of genetic gains through selection of sweet potato accessions
    Vargas, Pablo F.
    Otoboni, Maria Eduarda F.
    Lopes, Beatriz G.
    Pavan, Bruno E.
    [J]. HORTICULTURA BRASILEIRA, 2020, 38 (04) : 387 - 393
  • [2] Bayesian approach to estimate genetic parameters and selection of sweet potato half-sib progenies
    Valadares, Nermy Ribeiro
    Goncalves Fernandes, Ana Clara
    Oliveira Rodrigues, Clovis Henrique
    Brito, Orlando Goncalves
    de Paula Gomes, Luan Souza
    Magalhaes, Jailson Ramos
    Alves, Rayane Aguiar
    Azevedo, Alcinei Mistico
    [J]. SCIENTIA HORTICULTURAE, 2022, 294
  • [3] Estimation of parameters in multi-mode heat transfer problems using Bayesian inference - Effect of noise and a priori
    Parthasarathy, Siddharth
    Balaji, C.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (9-10) : 2313 - 2334
  • [4] Bayesian inference for parameters estimation using experimental data
    Pepi, Chiara
    Gioffre, Massimiliano
    Grigoriu, Mircea
    [J]. PROBABILISTIC ENGINEERING MECHANICS, 2020, 60
  • [5] ESTIMATION OF SOME GENETIC-PARAMETERS IN POTATO - CONSEQUENCES FOR SELECTION
    ROUSSELLE, P
    LEBERRE, J
    BOZEC, M
    RIAUX, Y
    LARRUEAUROUSSEAU, F
    HEDOU, P
    [J]. PARENTAL LINE BREEDING AND SELECTION IN POTATO BREEDING, 1989, : 22 - 25
  • [6] Estimation of genetic parameters for milk yield in Murrah buffaloes by Bayesian inference
    Breda, F. C.
    Albuquerque, L. G.
    Euclydes, R. F.
    Bignardi, A. B.
    Baldi, F.
    Torres, R. A.
    Barbosa, L.
    Tonhati, H.
    [J]. JOURNAL OF DAIRY SCIENCE, 2010, 93 (02) : 784 - 791
  • [7] Bayesian inference of genetic parameters and selection response for litter size components in pigs
    Blasco, A
    Sorensen, D
    Bidanel, JP
    [J]. GENETICS, 1998, 149 (01) : 301 - 306
  • [8] Genetic parameters and selection gain in tropical wheat populations via Bayesian inference
    Mezzmo, Henrique Caletti
    Casagrande, Cleiton Renato
    Azevedo, Camila Ferreira
    Borem, Aluizio
    Barros, Willian Silva
    Nardino, Maicon
    [J]. CIENCIA RURAL, 2023, 53 (07):
  • [9] Genetic parameters and selection of maize cultivars using Bayesian inference in a multi-trait linear model
    Bocianowski, Jan
    Nowosad, Kamila
    Szulc, Piotr
    Tratwal, Anna
    Bakinowska, Ewa
    Piesik, Dariusz
    [J]. ACTA AGRICULTURAE SCANDINAVICA SECTION B-SOIL AND PLANT SCIENCE, 2019, 69 (06): : 465 - 478
  • [10] Genetic parameters for five traits in Africanized honeybees using Bayesian inference
    Padilha, Alessandro Haiduck
    Sattler, Aroni
    Cobuci, Jaime Araujo
    McManus, Concepta Margaret
    [J]. GENETICS AND MOLECULAR BIOLOGY, 2013, 36 (02) : 207 - 213