pH-responsive polyzwitterion covered nanocarriers for DNA delivery

被引:18
|
作者
Shen, Xin [1 ,2 ]
Dirisala, Anjaneyulu [3 ]
Toyoda, Masahiro [1 ,2 ]
Xiao, Yao [1 ,2 ]
Guo, Haochen [1 ,2 ]
Honda, Yuto [1 ,2 ,3 ]
Nomoto, Takahiro [1 ,4 ]
Takemoto, Hiroyasu [1 ,2 ,5 ]
Miura, Yutaka [1 ,2 ]
Nishiyama, Nobuhiro [1 ,2 ,3 ]
机构
[1] Tokyo Inst Technol, Inst Innovat Res, Lab Chem & Life Sci, 4259 Nagatsutacho,Midori Ku, Yokohama, Kanagawa 2268503, Japan
[2] Tokyo Inst Technol, Sch Life Sci & Technol, Dept Life Sci & Technol, 4259 Nagatsutacho,Midori Ku, Yokohama, Kanagawa, Japan
[3] Kawasaki Inst Ind Promot, Innovat Ctr NanoMed iCONM, 3-25-14 Tonomachi,Kawasaki Ku, Kawasaki, Kanagawa 2100821, Japan
[4] Univ Tokyo, Grad Sch Arts & Sci, Dept Life Sci, 3-8-1 Komaba,Meguro Ku, Tokyo 1538902, Japan
[5] Kyoto Prefectural Univ Med, Grad Sch Med Sci, Med Chem, 1-5 Shimogamohangi Cho,Sakyo Ku, Kyoto 6060823, Japan
基金
日本科学技术振兴机构;
关键词
pH-responsiveness; Polyzwitterion; Plasmid DNA; Polyplex; Charge-switchability; Gene therapy; INTRACELLULAR TRAFFICKING; GENE; VECTORS; THERAPEUTICS; POLYPLEXES; SYSTEMS; DESIGN; TUMORS; PEI;
D O I
10.1016/j.jconrel.2023.07.038
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The success of gene therapy relies on gene nanocarriers to achieve therapeutic effects in vivo. Surface shielding of poly(ethylene glycol) (PEG), known as PEGylation, onto gene delivery carriers is a predominant strategy for extending blood circulation and improving therapeutic outcomes in vivo. Nevertheless, PEGylation frequently compromises the transfection efficiency by decreasing the interactions with the cellular membrane of the targeted cells, thereby preventing the cellular uptake and the subsequent endosomal escape. Herein, we developed a stepwise pH-responsive polyplex micelle for the plasmid DNA delivery with the surface covered by ethylenediamine-based polycarboxybetaines. This polyplex micelle switched its surface charge from neutral at pH 7.4 to positive at tumorous and endo-/lysosomal pH (i.e., pH 6.5 and 5.5, respectively), thus enhancing the cellular uptake and facilitating the endosomal escape toward efficient gene transfection. Additionally, the polyplex micelle demonstrated prolonged blood circulation as well as enhanced tumor accumulation, leading to highly effective tumor growth suppression by delivering an antiangiogenic gene. These results suggest the usefulness of a pH-responsive charge-switchable shell polymer on the surface of the polyplex micelle for the efficient nucleic acid delivery.
引用
收藏
页码:928 / 939
页数:12
相关论文
共 50 条
  • [21] Magnetic and pH-responsive nanocarriers with multilayer core-shell architecture for anticancer drug delivery
    Guo, Miao
    Yan, Yu
    Zhang, Hongkai
    Yan, Husheng
    Cao, Youjia
    Liu, Keliang
    Wan, Shourong
    Huang, Junsheng
    Yue, Wei
    JOURNAL OF MATERIALS CHEMISTRY, 2008, 18 (42) : 5104 - 5112
  • [22] Smart pH-responsive magnetic graphene quantum dots nanocarriers for anticancer drug delivery of curcumin
    Zadeh, Elham Seyyedi
    Ghanbari, Narges
    Salehi, Zeinab
    Derakhti, Sorour
    Amoabediny, Ghassem
    Akbari, Maryam
    Tokmedash, Mohammad Asadi
    MATERIALS CHEMISTRY AND PHYSICS, 2023, 297
  • [23] Terminal Deoxynucleotidyl Transferase-Catalyzed Preparation of pH-Responsive DNA Nanocarriers for Tumor-Targeted Drug Delivery and Therapy
    Sun, Guo-Ying
    Du, Yi-Chen
    Cui, Yun-Xi
    Wang, Jing
    Li, Xiao-Yu
    Tang, An-Na
    Kong, De-Ming
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (16) : 14684 - 14692
  • [24] pH-Responsive Nanoparticles for Drug Delivery
    Gao, Weiwei
    Chan, Juliana M.
    Farokhzad, Omid C.
    MOLECULAR PHARMACEUTICS, 2010, 7 (06) : 1913 - 1920
  • [25] pH-Responsive Nanocarriers Based on Dynamic Covalent Hyperbranched Polymers
    Shi, Yunfeng
    Wang, Junjie
    Yuan, Baiqing
    Lv, Bingjie
    Hou, Xiaoyu
    Yang, Xiaoyun
    Qin, Zhilei
    Jia, Shuang
    Lu, Dandan
    Du, Jimin
    Ma, Fengji
    Liu, Lin
    SCIENCE OF ADVANCED MATERIALS, 2015, 7 (11) : 2486 - 2491
  • [26] pH-responsive niosome-based nanocarriers of antineoplastic agents
    Gugleva, Viliana
    Mihaylova, Rositsa
    Momekov, Georgi
    Kamenova, Katya
    Forys, Aleksander
    Trzebicka, Barbara
    Petrova, Maria
    Ugrinova, Iva
    Momekova, Denitsa
    Petrov, Petar D.
    RSC ADVANCES, 2024, 14 (16) : 11124 - 11140
  • [27] DNA Condensation by pH-Responsive Polycations
    Jorge, Andreia F.
    Dias, Rita S.
    Pereira, Jorge C.
    Pais, Alberto A. C. C.
    BIOMACROMOLECULES, 2010, 11 (09) : 2399 - 2406
  • [28] Dual-stimuli reduction and acidic pH-responsive bionanogels: intracellular delivery nanocarriers with enhanced release
    Wen, Yifen
    Oh, Jung Kwon
    RSC ADVANCES, 2014, 4 (01) : 229 - 237
  • [29] Room-Temperature Synthesis of pH-Responsive MOF Nanocarriers for Targeted Drug Delivery in Cancer Therapy
    Amir Kazemi
    Mohammad Hossein Afshari
    Hasan Baesmat
    Saber Keshavarz
    Fateme Zeinali
    Shahla Zahiri
    Elahe Torabi
    Faranak Manteghi
    Sohrab Rohani
    Journal of Polymers and the Environment, 2025, 33 (3) : 1505 - 1516
  • [30] Fabrication and application of copper metal-organic frameworks as nanocarriers for pH-responsive anticancer drug delivery
    Gharehdaghi, Zahra
    Rahimi, Rahmatollah
    Naghib, Seyed Morteza
    Molaabasi, Fatemeh
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2022, 19 (07) : 2727 - 2737