Imputing stem frequency distributions using harvester and airborne laser scanner data: a comparison of inventory approaches

被引:0
|
作者
Noordermeer, Lennart [1 ]
Orka, Hans Ole [1 ]
Gobakken, Terje [1 ]
机构
[1] Norwegian Univ Life Sci, Fac Environm Sci & Nat Resource Management, POB 5003, NO-1432 As, Norway
关键词
airborne laser scanning; forest inventory; harvester data; inventory approaches; FOREST STAND CHARACTERISTICS; INDIVIDUAL TREE DETECTION; DIAMETER DISTRIBUTIONS; SINGLE-TREE; ABOVEGROUND BIOMASS; LIDAR; DENSITY; HEIGHT; MODEL; ALGORITHMS;
D O I
10.14214/sf.23023
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Stem frequency distributions provide useful information for pre-harvest planning. We compared four inventory approaches for imputing stem frequency distributions using harvester data as reference data and predictor variables computed from airborne laser scanner (ALS) data. We imputed distributions and stand mean values of stem diameter, tree height, volume, and sawn wood volume using the k-nearest neighbor technique. We compared the inventory approaches: (1) individual tree crown (ITC), semi-ITC, area-based (ABA) and enhanced ABA (EABA). We assessed the accuracies of imputed distributions using a variant of the Reynold's error index, obtaining the best mean accuracies of 0.13, 0.13, 0.10 and 0.10 for distributions of stem diameter, tree height, volume and sawn wood volume, respectively. Accuracies obtained using the semi-ITC, ABA and EABA inventory approaches were significantly better than accuracies obtained using the ITC approach. The forest attribute, inventory approach, stand size and the laser pulse density had significant effects on the accuracies of imputed frequency distributions, however the ALS delay and percentage of deciduous trees did not. This study highlights the utility of harvester and ALS data for imputing stem frequency distributions in pre-harvest inventories.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Predicting and mapping site index in operational forest inventories using bitemporal airborne laser scanner data
    Noordermeer, Lennart
    Gobakken, Terje
    Naesset, Erik
    Bollandsas, Ole Martin
    FOREST ECOLOGY AND MANAGEMENT, 2020, 457
  • [42] ON OBJECT EXTRACTION USING AIRBORNE LASER SCANNER DATA AND DIGITAL IMAGES FOR 3D MODELLING
    Nakano, K.
    Chikatsu, H.
    XXII ISPRS CONGRESS, TECHNICAL COMMISSION III, 2012, 39-B3 : 53 - 58
  • [43] Assessing the attributes of high-density Eucalyptus globulus stands using airborne laser scanner data
    Goncalves-Seco, Luis
    Gonzalez-Ferreiro, Eduardo
    Dieguez-Aranda, Ulises
    Fraga-Bugallo, Bruno
    Crecente, Rafael
    Miranda, David
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2011, 32 (24) : 9821 - 9841
  • [44] Enhancement of bioenergy estimations within forests using airborne laser scanning and multispectral line scanner data
    Straub, Christoph
    Koch, Barbara
    BIOMASS & BIOENERGY, 2011, 35 (08): : 3561 - 3574
  • [45] Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data
    Tompalski, Piotr
    White, Joanne C.
    Coops, Nicholas C.
    Wulder, Michael A.
    REMOTE SENSING OF ENVIRONMENT, 2019, 227 : 110 - 124
  • [46] Monitoring seedling stands using national forest inventory and multispectral airborne laser scanning data
    Rana, Parvez
    Mattila, Ulla
    Mehtaetalo, Lauri
    Siipilehto, Jouni
    Hou, Zhengyang
    Xu, Qing
    Tokola, Timo
    CANADIAN JOURNAL OF FOREST RESEARCH, 2023, 53 (04) : 302 - 313
  • [47] Large-area inventory of species composition using airborne laser scanning and hyperspectral data
    Orka, Hans Ole
    Hansen, Endre
    Dalponte, Michele
    Gobakken, Terje
    Naesset, Erik
    SILVA FENNICA, 2021, 55 (04)
  • [48] EFFECT OF SIZE AND NUMBER OF CALIBRATION PLOTS ON THE ESTIMATION OF STEM DIAMETER DISTRIBUTIONS USING AIRBORNE LASER SCANNING
    Shang, Chen
    Jones, Trevor
    Treitz, Paul
    2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 1753 - 1756
  • [49] Monitoring tree occupancy and height in the Norwegian alpine treeline using a time series of airborne laser scanner data
    Noordermeer, Lennart
    Bielza, Jaime Candelas
    Saarela, Svetlana
    Gobakken, Terje
    Bollandsas, Ole Martin
    Naesset, Erik
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 117
  • [50] Detection of biomass change in a Norwegian mountain forest area using small footprint airborne laser scanner data
    Ole Martin Bollandsås
    Timothy G. Gregoire
    Erik Næsset
    Bernt-Håvard Øyen
    Statistical Methods & Applications, 2013, 22 : 113 - 129