Predictive quantile regression with mixed roots and increasing dimensions: The ALQR approach

被引:1
|
作者
Fan, Rui [1 ]
Lee, Ji Hyung [2 ]
Shin, Youngki [3 ]
机构
[1] Rensselaer Polytech Inst, Dept Econ, Russell Sage Lab, 4307,110 8th St, Troy, NY 12180 USA
[2] Univ Illinois, Dept Econ, 214 David Kinley Hall,1407 West Gregory Dr, Urbana, IL 61801 USA
[3] McMaster Univ, Dept Econ, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
关键词
Adaptive lasso; Cointegration; Forecasting; Oracle property; Quantile regression; TUNING PARAMETER SELECTION; VARIABLE SELECTION; ASYMPTOTIC-BEHAVIOR; DIVIDEND YIELDS; ADAPTIVE LASSO; STOCK RETURNS; M-ESTIMATORS; INFERENCE; TIME; SHRINKAGE;
D O I
10.1016/j.jeconom.2022.11.006
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we propose the adaptive lasso for predictive quantile regression (ALQR). Reflecting empirical findings, we allow predictors to have various degrees of persistence and exhibit different signal strengths. The number of predictors is allowed to grow with the sample size. We study regularity conditions under which stationary, local unit root, and cointegrated predictors are present simultaneously. We next show the convergence rates, model selection consistency, and asymptotic distributions of ALQR. We apply the proposed method to the out-of-sample quantile prediction problem of stock returns and find that it outperforms the existing alternatives. We also provide numerical evidence from additional Monte Carlo experiments, supporting the theoretical results.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Quantile regression approach to conditional mode estimation
    Ota, Hirofumi
    Kato, Kengo
    Hara, Satoshi
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (02): : 3120 - 3160
  • [42] Healthy Ageing in India; A Quantile Regression Approach
    C. V. Irshad
    Umakant Dash
    V. R. Muraleedharan
    Journal of Population Ageing, 2022, 15 : 217 - 238
  • [43] Determinants of share repurchases: A quantile regression approach
    Chasiotis, Ioannis
    Georgantopoulos, Andreas G.
    Eriotis, Nikolaos
    ECONOMICS AND BUSINESS LETTERS, 2021, 10 (01): : 27 - 36
  • [44] A Bayesian Nonparametric Approach to Inference for Quantile Regression
    Taddy, Matthew A.
    Kottas, Athanasios
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2010, 28 (03) : 357 - 369
  • [45] Healthy Ageing in India; A Quantile Regression Approach
    Irshad, C., V
    Dash, Umakant
    Muraleedharan, V. R.
    JOURNAL OF POPULATION AGEING, 2022, 15 (01) : 217 - 238
  • [46] Predictive uncertainty assessment in flood forecasting using quantile regression
    Amina, M. K.
    Chithra, N. R.
    H2OPEN JOURNAL, 2023, 6 (03) : 477 - 492
  • [47] Trade credit in SMEs: a quantile regression approach
    Canto-Cuevas, Francisco-Javier
    Palacin-Sanchez, Maria-Jose
    di Pietro, Filippo
    APPLIED ECONOMICS LETTERS, 2016, 23 (13) : 945 - 948
  • [48] Determinants of Pay in the NHL A Quantile Regression Approach
    Vincent, Claude
    Eastman, Byron
    JOURNAL OF SPORTS ECONOMICS, 2009, 10 (03) : 256 - 277
  • [49] A New Approach to Censored Quantile Regression Estimation
    Yang, Xiaorong
    Narisetty, Naveen Naidu
    He, Xuming
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2018, 27 (02) : 417 - 425
  • [50] Determinants of House Prices: A Quantile Regression Approach
    Joachim Zietz
    Emily Norman Zietz
    G. Stacy Sirmans
    The Journal of Real Estate Finance and Economics, 2008, 37 : 317 - 333