Evaluating Recommendations About Atrial Fibrillation for Patients and Clinicians Obtained From Chat-Based Artificial Intelligence Algorithms

被引:6
|
作者
Azizi, Zahra [2 ]
Alipour, Pouria [5 ]
Gomez, Sofia [6 ]
Broadwin, Cassandra [2 ]
Islam, Sumaiya [2 ]
Sarraju, Ashish [7 ]
Rogers, A. J. [3 ,4 ]
Sandhu, Alexander T. [3 ,4 ,8 ]
Rodriguez, Fatima [1 ,3 ,4 ]
机构
[1] Stanford Univ, Ctr Acad Med, Div Cardiovasc Med, Mail Code 5687,453 Quarry Rd, Stanford, CA 94304 USA
[2] Ctr Digital Hlth, Stanford, CA USA
[3] Stanford Univ, Div Cardiovasc Med, Stanford, CA USA
[4] Stanford Univ, Cardiovasc Inst, Dept Med, Stanford, CA USA
[5] McGill Univ, Dept Med, Montreal, PQ, Canada
[6] Stanford Sch Med, Dept Med, Palo Alto, CA USA
[7] Cleveland Clin, Dept Cardiovasc Med, Cleveland, OH USA
[8] Vet Affairs Palo Alto Healthcare Syst, Livermore, CA USA
来源
CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY | 2023年 / 16卷 / 07期
关键词
arrhythmia; atrial fibrillation; patients; physicians;
D O I
10.1161/CIRCEP.123.012015
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
[No abstract available]
引用
收藏
页码:415 / 417
页数:3
相关论文
共 27 条
  • [21] Accuracy and consistency of online large language model-based artificial intelligence chat platforms in answering patients' questions about heart failure
    Kozaily, Elie
    Geagea, Mabelissa
    Akdogan, Ecem R.
    Atkins, Jessica
    Elshazly, Mohamed B.
    Guglin, Maya
    Tedford, Ryan J.
    Wehbe, Ramsey M.
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 408
  • [22] Artificial intelligence-enabled detection of paroxysmal atrial fibrillation from normal sinus ECGs in patients with coronary microvascular dysfunction
    Ahmad, A.
    Corban, M.
    Toya, T.
    Attia, Z., I
    Noseworthy, R.
    Cohen, M. Shelly
    Lopez-Jimenez, F.
    Kapa, S.
    Friedman, P. A.
    Lerman, A.
    EUROPEAN HEART JOURNAL, 2020, 41 : 1265 - 1265
  • [23] An artificial intelligence-based model for prediction of atrial fibrillation from single-lead sinus rhythm electrocardiograms facilitating screening
    Hygrell, Tove
    Viberg, Fredrik
    Dahlberg, Erik
    Charlton, Peter H.
    Gudmundsdottir, Katrin Kemp
    Mant, Jonathan
    Hornlund, Josef Lindman
    Svennberg, Emma
    EUROPACE, 2023, 25 (04): : 1332 - 1338
  • [24] Concordance between cardiological interventions and artificial intelligence recommendations for patients presenting with chest pain, based on consultations from the emergency department to cardiology
    Mancebo, N. Gil
    Caballero, R. Mata
    Coronel, B. Izquierdo
    Sanz, A. Fraile
    Carreno, J. A. Carnicero
    Montes, P. Rodriguez
    Ybanez, S. Humanes
    de Asua, M. de la Serna Real
    Munoz, M. Martin
    Bello, M. Alvarez
    Alvarez, C. Perela
    Ibanez, D. Nieto
    Rodriguez, R. Olsen
    Garcia, P. Awamleh
    Martin, J. J. Alonso
    EUROPEAN HEART JOURNAL, 2024, 45
  • [25] Comment on "Accuracy and consistency of online large language model-based artificial intelligence chat platforms in answering patients' questions about heart failure: Doi: 10.1016/j. ijcard.2024.132115 "
    Daungsupawong, Hinpetch
    Wiwanitkit, Viroj
    INTERNATIONAL JOURNAL OF CARDIOLOGY, 2024, 410
  • [26] A comparison of artificial intelligence-based algorithms for the identification of patients with depressed right ventricular function from 2-dimentional echocardiography parameters and clinical features
    Ahmad, Ali
    Ibrahim, Zahi
    Sakr, Georges
    El-Bizri, Abdallah
    Masri, Lara
    Elhajj, Imad H.
    El-Hachem, Nehme
    Isma'eel, Hussain
    CARDIOVASCULAR DIAGNOSIS AND THERAPY, 2020, 10 (04) : 859 - 868
  • [27] Predicting patient-level new-onset atrial fibrillation from population-based nationwide electronic health records: protocol of FIND-AF for developing a precision medicine prediction model using artificial intelligence
    Nadarajah, Ramesh
    Wu, Jianhua
    Frangi, Alejandro F.
    Hogg, David
    Cowan, Campbell
    Gale, Chris
    BMJ OPEN, 2021, 11 (11):