General fractional interval-valued differential equations and Gronwall inequalities

被引:2
|
作者
Fan, Qin [1 ,2 ]
Huang, Lan-Lan [2 ]
Wu, Guo-Cheng [2 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Sci, Chongqing 400065, Peoples R China
[2] Neijiang Normal Univ, Coll Math & Informat Sci, Data Recovery Key Lab Sichuan Prov, Neijiang 641100, Peoples R China
基金
中国国家自然科学基金;
关键词
General fractional calculus; Interval-valued function; Gronwall inequality; Interval-valued analysis; CALCULUS; EXISTENCE;
D O I
10.1007/s00500-023-08046-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Interval-valued systems with the general fractional derivative are defined on closed intervals on the real line R. Function spaces of the fractional integrals and derivatives are discussed. Then some fundamental theorems of the Caputo and Riemann-Liouville derivatives are provided, respectively. Finally, the interval-valued Gronwall inequalities are presented as one application.
引用
收藏
页码:7739 / 7749
页数:11
相关论文
共 50 条
  • [41] Fractional calculus for interval-valued functions
    Lupulescu, Vasile
    FUZZY SETS AND SYSTEMS, 2015, 265 : 63 - 85
  • [42] Applications of contractive-like mapping principles to interval-valued fractional integro-differential equations
    Truong Vinh An
    Ho Vu
    Ngo Van Hoa
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (04) : 2577 - 2599
  • [43] New Henry-Gronwall Integral Inequalities and Their Applications to Fractional Differential Equations
    Zhu, Tao
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (03): : 647 - 657
  • [44] Applications of contractive-like mapping principles to interval-valued fractional integro-differential equations
    Truong Vinh An
    Ho Vu
    Ngo Van Hoa
    Journal of Fixed Point Theory and Applications, 2017, 19 : 2577 - 2599
  • [45] Existence of extremal solutions to interval-valued delay fractional differential equations via monotone iterative technique
    Ho Vu
    Lupulescu, Vasile
    Ngo Van Hoa
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 34 (04) : 2177 - 2195
  • [46] Some integral inequalities for interval-valued functions
    Roman-Flores, H.
    Chalco-Cano, Y.
    Lodwick, W. A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 1306 - 1318
  • [47] Boundary value problems for interval-valued differential equations on unbounded domains
    Wang, Hongzhou
    Rodriguez-Lopez, Rosana
    FUZZY SETS AND SYSTEMS, 2022, 436 : 102 - 127
  • [48] On the structure of solutions of Volterra interval-valued integro-differential equations
    Younus, Awais
    Shaheen, Tahira
    Tunc, Cemil
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020,
  • [49] Chebyshev type inequalities for interval-valued functions
    Zhao, Dafang
    An, Tianqing
    Ye, Guoju
    Liu, Wei
    FUZZY SETS AND SYSTEMS, 2020, 396 (396) : 82 - 101
  • [50] Some integral inequalities for interval-valued functions
    H. Román-Flores
    Y. Chalco-Cano
    W. A. Lodwick
    Computational and Applied Mathematics, 2018, 37 : 1306 - 1318