Blocking Store-Operated Ca2+ Entry to Protect HL-1 Cardiomyocytes from Epirubicin-Induced Cardiotoxicity

被引:0
|
作者
Liu, Xian [1 ,2 ]
Chang, Yan [2 ,3 ]
Choi, Sangyong [2 ]
Cai, Chuanxi [4 ]
Zhang, Xiaoli [5 ]
Pan, Zui [1 ,2 ,3 ]
机构
[1] Univ Texas Arlington, Coll Nursing & Hlth Innovat, Dept Kinesiol, Arlington, TX 76010 USA
[2] Univ Texas Arlington, Coll Nursing & Hlth Innovat, Dept Grad Nursing, Arlington, TX 76010 USA
[3] Univ Texas Arlington, Coll Nursing & Hlth Innovat, Bone & Muscle Res Ctr, Arlington, TX 76010 USA
[4] Univ Virginia, Sch Med, Dept Surg, Div Surg Sci, Charlottesville, VA 22903 USA
[5] Ohio State Univ, Dept Biomed Informat, Columbus, OH 43210 USA
基金
美国国家卫生研究院;
关键词
anthracycline; chemotherapy; store-operated Ca2+ entry (SOCE); apoptosis; cardiac hypertrophy; NFAT4; reactive oxygen species (ROS); CALCIUM-ENTRY; TRPC CHANNELS; HEART-FAILURE; STIM1; DOXORUBICIN; CELLS; HYPERTROPHY; CONTRIBUTES; EXPRESSION; APOPTOSIS;
D O I
10.3390/cells12050723
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Epirubicin (EPI) is one of the most widely used anthracycline chemotherapy drugs, yet its cardiotoxicity severely limits its clinical application. Altered intracellular Ca2+ homeostasis has been shown to contribute to EPI-induced cell death and hypertrophy in the heart. While store-operated Ca2+ entry (SOCE) has recently been linked with cardiac hypertrophy and heart failure, its role in EPI-induced cardiotoxicity remains unknown. Using a publicly available RNA-seq dataset of human iPSC-derived cardiomyocytes, gene analysis showed that cells treated with 2 mu M EPI for 48 h had significantly reduced expression of SOCE machinery genes, e.g., Orai1, Orai3, TRPC3, TRPC4, Stim1, and Stim2. Using HL-1, a cardiomyocyte cell line derived from adult mouse atria, and Fura-2, a ratiometric Ca2+ fluorescent dye, this study confirmed that SOCE was indeed significantly reduced in HL-1 cells treated with EPI for 6 h or longer. However, HL-1 cells presented increased SOCE as well as increased reactive oxygen species (ROS) production at 30 min after EPI treatment. EPI-induced apoptosis was evidenced by disruption of F-actin and increased cleavage of caspase-3 protein. The HL-1 cells that survived to 24 h after EPI treatment demonstrated enlarged cell sizes, up-regulated expression of brain natriuretic peptide (a hypertrophy marker), and increased NFAT4 nuclear translocation. Treatment by BTP2, a known SOCE blocker, decreased the initial EPI-enhanced SOCE, rescued HL-1 cells from EPI-induced apoptosis, and reduced NFAT4 nuclear translocation and hypertrophy. This study suggests that EPI may affect SOCE in two phases: the initial enhancement phase and the following cell compensatory reduction phase. Administration of a SOCE blocker at the initial enhancement phase may protect cardiomyocytes from EPI-induced toxicity and hypertrophy.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Lysosomal agents inhibit store-operated Ca2+ entry
    Morgan, Anthony J.
    Galione, Antony
    JOURNAL OF CELL SCIENCE, 2021, 134 (02)
  • [22] Store-operated Ca2+ entry in muscle physiology and diseases
    Pan, Zui
    Brotto, Marco
    Ma, Jianjie
    BMB REPORTS, 2014, 47 (02) : 69 - 79
  • [23] The function of Store-operated Ca2+ entry(SOCE)in melanoma
    Umemura, Masanari
    Fujita, Takayuki
    Yokoyama, Utako
    Ishikawa, Yoshihiro
    Iwatsubo, Kousaku
    JOURNAL OF PHYSIOLOGICAL SCIENCES, 2013, 63 : S74 - S74
  • [24] What Role for Store-Operated Ca2+ Entry in Muscle?
    Trebak, Mohamed
    Zhang, Wei
    Ruhle, Brian
    Henkel, Matthew M.
    Gonzalez-Cobos, Jose C.
    Motiani, Rajender K.
    Stolwijk, Judith A.
    Newton, Rachel L.
    Zhang, Xuexin
    MICROCIRCULATION, 2013, 20 (04) : 330 - 336
  • [25] Role of store-operated Ca2+ entry in cardiovascular disease
    Ting Lu
    Yihua Zhang
    Yong Su
    Dayan Zhou
    Qiang Xu
    Cell Communication and Signaling, 20
  • [26] Ethanol inhibits store-operated Ca2+ entry of platelets
    Wakabayashi, I
    Marumo, M
    PHARMACOLOGY & TOXICOLOGY, 2002, 90 (04): : 226 - 228
  • [27] Store-operated CA2+ entry in mouse sinoatrial node
    Ju, YK
    Allen, DG
    JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY, 2005, 38 (06) : 1032 - 1032
  • [28] STIM1 regulates store-operated Ca2+ entry in oocytes
    Koh, Sehwon
    Lee, Kiho
    Wang, Chunmin
    Cabot, Ryan A.
    Machaty, Zoltan
    DEVELOPMENTAL BIOLOGY, 2009, 330 (02) : 368 - 376
  • [29] Store-operated Ca2+ entry is not required for store refilling in skeletal muscle
    Cully, Tanya R.
    Launikonis, Bradley S.
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2013, 40 (05) : 338 - 344
  • [30] Expanding the store-operated Ca2+ entry microdomain through Ca2+ tunneling
    Courjaret, Raphael J.
    Machaca, Khaled
    CURRENT OPINION IN PHYSIOLOGY, 2020, 17 : 158 - 162