Pointwise Weyl Law for Graphs from Quantized Interval Maps

被引:0
|
作者
Shou, Laura [1 ,2 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
来源
ANNALES HENRI POINCARE | 2023年 / 24卷 / 08期
基金
美国国家科学基金会;
关键词
QUANTUM ERGODICITY; SPECTRAL STATISTICS; LINEAR-MAPS; EIGENFUNCTIONS; ASYMPTOTICS; ENSEMBLES;
D O I
10.1007/s00023-023-01276-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove an analogue of the pointwise Weyl law for families of unitary matrices obtained from quantization of one-dimensional interval maps. This quantization for interval maps was introduced by Pakonski et al. (J Phys A 34:9303-9317, 2001) as a model for quantum chaos on graphs. Since we allow shrinking spectral windows in the pointwise Weyl law, as a consequence we obtain for these models a strengthening of the quantum ergodic theorem from Berkolaiko et al. (Commun Math Phys 273:137-159, 2007), and show in the semiclassical limit that a family of randomly perturbed quantizations has approximately Gaussian eigenvectors. We also examine further the specific case where the interval map is the doubling map.
引用
收藏
页码:2833 / 2875
页数:43
相关论文
共 50 条
  • [41] Pointwise hemi-slant Riemannian maps (PHSRM) from almost Hermitian manifolds
    Akyol, Mehmet Akif
    Gunduzalp, Yilmaz
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (05): : 1218 - 1237
  • [42] REGULAR MAPS FROM CAYLEY-GRAPHS .II. ANTIBALANCED CAYLEY MAPS
    SIRAN, J
    SKOVIERA, M
    DISCRETE MATHEMATICS, 1994, 124 (1-3) : 179 - 191
  • [43] Regular maps from Cayley graphs III:: t-balanced Cayley maps
    Liskova, Lubica
    Macaj, Martin
    Skoviera, Martin
    DISCRETE MATHEMATICS, 2007, 307 (3-5) : 517 - 533
  • [44] REGULAR MAPS FROM CAYLEY-GRAPHS .1. BALANCED CAYLEY MAPS
    SKOVIERA, M
    SIRAN, J
    DISCRETE MATHEMATICS, 1992, 109 (1-3) : 265 - 276
  • [45] UNIMODAL INTERVAL MAPS OBTAINED FROM THE MODIFIED CHUA EQUATIONS
    Misiurewicz, Michal
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1993, 3 (02): : 323 - 332
  • [46] Constructing pseudo-Anosovs from expanding interval maps
    Farber, Ethan
    GROUPS GEOMETRY AND DYNAMICS, 2024, 18 (01) : 265 - 325
  • [47] TOEPLITZ ALGEBRAS ARISING FROM ESCAPE POINTS OF INTERVAL MAPS
    Correia Ramos, C.
    Martins, Nuno
    Pinto, Paulo R.
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2017, 11 (03): : 536 - 553
  • [48] Wormholes in virtual space: From cognitive maps to cognitive graphs
    Warren, William H.
    Rothman, Daniel B.
    Schnapp, Benjamin H.
    Ericson, Jonathan D.
    COGNITION, 2017, 166 : 152 - 163
  • [49] Graphs of stable maps from closed surfaces to the projective plane
    Mendes de Jesus, C.
    Romero-Fuster, M. C.
    TOPOLOGY AND ITS APPLICATIONS, 2018, 234 : 298 - 310
  • [50] COLORING MAPS MADE FROM EULERIAN GRAPHS - PRELIMINARY REPORT
    HUTCHINS.JP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A228 - A228