Ramsey and Gallai-Ramsey numbers for the union of paths and stars

被引:3
|
作者
Zhou, Jiannan
Li, Zhihui
Mao, Yaping [1 ,3 ]
Wei, Meiqin [2 ,4 ]
机构
[1] Qinghai Normal Univ, Sch Math & Stat, Xining 810008, Qinghai, Peoples R China
[2] Shaanxi Normal Univ, Sch Math & Stat, Xian 710062, Shaanxi, Peoples R China
[3] Qinghai Normal Univ, Acad Plateau Sci & Sustainabil, Xining 810008, Qinghai, Peoples R China
[4] Shanghai Maritime Univ, Coll Arts & Sci, Shanghai 201306, Peoples R China
基金
中国国家自然科学基金;
关键词
Ramsey theory; Gallai-Ramsey number; Star; Path; Disjoint union; COMPLETE GRAPHS;
D O I
10.1016/j.dam.2022.10.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given k graphs H1, H2, ... , Hk, the k-color Ramsey number R(H1, H2, ... , Hk) is defined as the minimum integer n such that every k-edge-coloring of Kn contains a monochromatic Hi, for some i is an element of [k]. If H1 = H2 = ... = Hk = H, then we write the number as Rk(H). Given two graphs G and H, and a positive integer k, define the Gallai-Ramsey number grk(G : H) as the minimum number of vertices n such that any exact k-edge coloring of Kn contains either a rainbow copy of G or a monochromatic copy of H. Much like Ramsey numbers, Gallai-Ramsey numbers have gained a reputation as being difficult to compute in general. In this paper, we determine the exact values or upper and lower bounds of Gallai-Ramsey number grk(G : H) and Ramsey numbers R2(H), R3(H) when H is the union of a path and a star, and G is a 3-star or a 4-path or P4+, where P4+ is the graph consisting of a P4 with one extra edge incident with an inner vertex. (c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页码:297 / 308
页数:12
相关论文
共 50 条
  • [31] GALLAI-RAMSEY NUMBERS FOR RAINBOW TREES AND MONOCHROMATIC COMPLETE BIPARTITE GRAPHS
    Li, Luyi
    Li, Xueliang
    Mao, Yaping
    Si, Yuan
    [J]. DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024,
  • [32] Gallai-Ramsey number for K4
    Liu, Henry
    Magnant, Colton
    Saito, Akira
    Schiermeyer, Ingo
    Shi, Yongtang
    [J]. JOURNAL OF GRAPH THEORY, 2020, 94 (02) : 192 - 205
  • [33] Gallai-Ramsey numbers of C10 and C12
    Lei, Hui
    Shi, Yongtang
    Song, Zi-Xia
    Zhang, Jingmei
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2021, 79 : 380 - 400
  • [34] Gallai-Ramsey number of even cycles with chords
    Zhang, Fangfang
    Song, Zi-Xia
    Chen, Yaojun
    [J]. DISCRETE MATHEMATICS, 2022, 345 (03)
  • [35] All partitions have small parts - Gallai-Ramsey numbers of bipartite graphs
    Wu, Haibo
    Magnant, Colton
    Nowbandegani, Pouria Salehi
    Xia, Suman
    [J]. DISCRETE APPLIED MATHEMATICS, 2019, 254 : 196 - 203
  • [36] Gallai-Ramsey number of an 8-cycle
    Gregory, Jonathan
    Magnant, Colton
    Magnant, Zhuojun
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 744 - 748
  • [37] Gallai-Ramsey Multiplicity for Rainbow Small Trees
    Li, Xueliang
    Si, Yuan
    [J]. GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [38] A note on Gallai-Ramsey number of even wheels
    Song, Zi-Xia
    Wei, Bing
    Zhang, Fangfang
    Zhao, Qinghong
    [J]. DISCRETE MATHEMATICS, 2020, 343 (03)
  • [39] Multipartite Ramsey numbers for the union of stars
    Anuwiksa, I. Wayan Palton
    Simanjuntak, Rinovia
    Baskoro, Edy Tri
    [J]. ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (02) : 637 - 643
  • [40] THE RAMSEY NUMBERS FOR DISJOINT UNION OF STARS
    Hasmawati
    [J]. JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2010, 16 (02) : 133 - 138