Arithmetic equivalence for non-geometric extensions of global function fields

被引:0
|
作者
Battistoni, Francesco [1 ]
Oukhaba, Hassan [1 ]
机构
[1] Univ Bourgogne Franche Comte, Lab Math Besancon, CNRS UMR 6623, 16,Route Gray, F-25030 Besancon, France
关键词
Arithmetic equivalence; Global function fields; Inverse Galois problem; NUMBER-FIELDS;
D O I
10.1016/j.jnt.2022.07.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study couples of finite separable extensions of the function field Fq(T) which are arithmetically equivalent, i.e. such that prime ideals of Fq[T] decompose with the same inertia degrees in the two fields, up to finitely many exceptions. In the first part of this work, we extend previous results by Cornelissen, Kontogeorgis and Van der Zalm to the case of non-geometric extensions of Fq(T), which are fields such that their field of constants may be bigger than Fq. In the second part, we explicitly produce examples of non-geometric extensions of F2(T) which are equivalent and non-isomorphic over F2(T) and non-equivalent over F4(T), solving a particular Inverse Galois Problem.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:385 / 411
页数:27
相关论文
共 50 条
  • [31] Non-geometric orbifolds and wrapping rules
    Gianfranco Pradisi
    Fabio Riccioni
    Journal of High Energy Physics, 2014
  • [32] Moduli stabilization in non-geometric backgrounds
    Becker, Katrin
    Becker, Melanie
    Vafa, Cumrun
    Walcher, Johannes
    NUCLEAR PHYSICS B, 2007, 770 (1-2) : 1 - 46
  • [33] Non-Geometric Fluxes Versus (Non)-Geometry
    Andriot, David
    STRING-MATH 2012, 2015, 90 : 213 - 225
  • [34] Non-geometric backgrounds in string theory
    Plauschinn, Erik
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2019, 798 : 1 - 122
  • [35] Algebras and non-geometric flux vacua
    Font, Amamaria
    Guarino, Adolfo
    Moreno, Jesus M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (12):
  • [36] A Non-geometric Relativistic Theory of Gravitation
    Tai-Ping Lou
    International Journal of Theoretical Physics, 2013, 52 : 2856 - 2866
  • [37] On a new non-geometric element in gravity
    Ahluwalia, DV
    GENERAL RELATIVITY AND GRAVITATION, 1997, 29 (12) : 1491 - 1501
  • [38] Non-geometric orbifolds and wrapping rules
    Pradisi, Gianfranco
    Riccioni, Fabio
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (09):
  • [39] On non-geometric augmentations in high dimensions
    Golovko, Roman
    GEOMETRIAE DEDICATA, 2023, 217 (06)
  • [40] Non-geometric branes are DFT monopoles
    Ilya Bakhmatov
    Axel Kleinschmidt
    Edvard T. Musaev
    Journal of High Energy Physics, 2016