Evaluation of Leaf Chlorophyll Content from Acousto-Optic Hyperspectral Data: A Multi-Crop Study

被引:0
|
作者
Zolotukhina, Anastasia [1 ,2 ]
Machikhin, Alexander [1 ]
Guryleva, Anastasia [1 ,2 ]
Gresis, Valeria [2 ,3 ]
Kharchenko, Anastasia [3 ]
Dekhkanova, Karina [3 ]
Polyakova, Sofia [4 ]
Fomin, Denis [2 ,4 ]
Nesterov, Georgiy [2 ]
Pozhar, Vitold [1 ,2 ]
机构
[1] Russian Acad Sci, Sci & Technol Ctr Un Instrumentat, Acousto Opt Spect Lab, 15 Butlerova, Moscow 117342, Russia
[2] Natl Res Univ, Bauman Moscow State Tech Univ, Laser & Opt Elect Syst Dept, 52nd Baumanskaya, Moscow 105005, Russia
[3] Peoples Friendship Univ Russia, Agr Technol Inst, Moscow 117198, Russia
[4] Russian Acad Sci, Perm Agr Res Inst, Div Perm Fed Res Ctr, Ural Branch, Perm 614532, Russia
关键词
chlorophyll content mapping; hyperspectral imaging; acousto-optic imagery; digital image processing; vegetation indices; VEGETATION INDEXES; REFLECTANCE; LAI; GRASSLAND; RETRIEVAL;
D O I
10.3390/rs16061073
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chlorophyll plays a crucial role in the process of photosynthesis and helps to regulate plants' growth and development. Timely and accurate evaluation of leaf chlorophyll content provides valuable information about the health and productivity of plants as well as the effectiveness of agricultural treatments. For non-contact and high-performance chlorophyll content mapping in plants, spectral imaging techniques are the most widely used. Due to agility and rapid random-spectral-access tuning, acousto-optical imagers seem to be very attractive for the detection of vegetation indices and chlorophyll content assessment. This laboratory study demonstrates the capabilities of an acousto-optic imager for evaluation of leaf chlorophyll content in six crops with different biophysical properties: Ribes rubrum, Betula populifolia, Hibiscus rosa-sinensis, Prunus padus, Hordeum vulgare and Triticum aestivum. The experimental protocol includes plant collecting, reference spectrophotometric measurements, hyperspectral imaging data acquisition, processing and analysis and building a multi-crop chlorophyll model. For 90 inspected samples of plant leaves, the optimal vegetation index and model were found. Obtained values of chlorophyll concentrations correlate well with reference values (determination coefficient of 0.89 and relative error of 15%). Applying a multi-crop model to each pixel, we calculated chlorophyll content maps across all plant samples. The results of this study demonstrate that acousto-optic imagery is very promising for fast chlorophyll content assessment and other laboratory spectral-index-based measurements.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery
    Zhang, Yongqin
    Chen, Jing M.
    Miller, John R.
    Noland, Thomas L.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (07) : 3234 - 3247
  • [22] Algorithm of retrieving needle leaf chlorophyll content from hyperspectral remote sensing
    Zhang, Yongqin
    Chen, Jing M.
    Miller, John R.
    Noland, Thomas L.
    [J]. IGARSS: 2007 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-12: SENSING AND UNDERSTANDING OUR PLANET, 2007, : 2284 - +
  • [23] Transfer-learning-based approach for leaf chlorophyll content estimation of winter wheat from hyperspectral data
    Zhang, Yao
    Hui, Jian
    Qin, Qiming
    Sun, Yuanheng
    Zhang, Tianyuan
    Sun, Hong
    Li, Minzan
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 267
  • [24] Improving leaf chlorophyll content estimation through constrained PROSAIL model from airborne hyperspectral and LiDAR data
    Xu, Lu
    Shi, Shuo
    Gong, Wei
    Shi, Zixi
    Qu, Fangfang
    Tang, Xingtao
    Chen, Bowen
    Sun, Jia
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2022, 115
  • [25] Potential of hyperion EO-1 hyperspectral data for wheat crop chlorophyll content estimation
    Bannari, A.
    Khurshid, K. S.
    Staenz, K.
    Schwarz, J.
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2008, 34 : S139 - S157
  • [26] Field imaging system for hyperspectral data, 3D structural data and panchromatic image data measurement based on acousto-optic tunable filter
    Zhao, Huijie
    Wang, Ziye
    Jia, Guorui
    Li, Xudong
    Zhang, Ying
    [J]. OPTICS EXPRESS, 2018, 26 (13): : 17717 - 17730
  • [27] Assessing Rice Chlorophyll Content with Vegetation Indices from Hyperspectral Data
    Xu, Xingang
    Gu, Xiaohe
    Song, Xiaoyu
    Li, Cunjun
    Huang, Wenjiang
    [J]. COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE IV, PT 1, 2011, 344 : 296 - 303
  • [28] Deriving leaf chlorophyll content of green-leafy vegetables from hyperspectral reflectance
    Xue, Lihong
    Yang, Linzhang
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2009, 64 (01) : 97 - 106
  • [29] Non-Parametric Statistical Approaches for Leaf Area Index Estimation from Sentinel-2 Data: A Multi-Crop Assessment
    De Peppo, Margherita
    Taramelli, Andrea
    Boschetti, Mirco
    Mantino, Alberto
    Volpi, Iride
    Filipponi, Federico
    Tornato, Antonella
    Valentini, Emiliana
    Ragaglini, Giorgio
    [J]. REMOTE SENSING, 2021, 13 (14)
  • [30] Impact of vector quantization compression on hyperspectral data in the retrieval accuracies of crop chlorophyll content for precision agriculture
    Hu, BX
    Qian, SE
    Haboudane, D
    Miller, JR
    Hollinger, A
    Tremblay, N
    [J]. IGARSS 2002: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM AND 24TH CANADIAN SYMPOSIUM ON REMOTE SENSING, VOLS I-VI, PROCEEDINGS: REMOTE SENSING: INTEGRATING OUR VIEW OF THE PLANET, 2002, : 1655 - 1657