gcimpute: A Package for Missing Data Imputation

被引:0
|
作者
Zhao, Yuxuan [1 ]
Udell, Madeleine [2 ]
机构
[1] Cornell Univ, Dept Stat & Data Sci, Ithaca, NY 14850 USA
[2] Stanford Univ, Management Sci & Engn, Stanford, CA 94305 USA
来源
JOURNAL OF STATISTICAL SOFTWARE | 2024年 / 108卷 / 04期
关键词
missing data; single imputation; multiple imputation; Gaussian copula; mixed data; imputation uncertainty; !text type='Python']Python[!/text;
D O I
10.18637/jss.v108.i04
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This article introduces the Python package gcimpute for missing data imputation. Package gcimpute can impute missing data with many different variable types, including continuous, binary, ordinal, count, and truncated values, by modeling data as samples from a Gaussian copula model. This semiparametric model learns the marginal distribution of each variable to match the empirical distribution, yet describes the interactions between variables with a joint Gaussian that enables fast inference, imputation with confidence intervals, and multiple imputation. The package also provides specialized extensions to handle large datasets (with complexity linear in the number of observations) and streaming datasets (with online imputation). This article describes the underlying methodology and demonstrates how to use the software package.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 50 条
  • [11] Imputation of Missing Healthcare Data
    Chowdhury, Mohaimanul Hoque
    Islam, Muhammad Kamrul
    Khan, Shahidul Islam
    2017 20TH INTERNATIONAL CONFERENCE OF COMPUTER AND INFORMATION TECHNOLOGY (ICCIT), 2017,
  • [12] BAYESIAN IMPUTATION FOR MISSING DATA
    Nads, Azman A.
    Polestico, Daisy Lou L.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2022, 79 : 83 - 104
  • [13] Multiple imputation for missing data
    Patrician, PA
    RESEARCH IN NURSING & HEALTH, 2002, 25 (01) : 76 - 84
  • [14] Multiple imputation of missing data
    Lydersen, Stian
    TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2022, 142 (02) : 151 - 151
  • [15] Imputation of missing data in surveys
    Rässler, S
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2000, 220 (01): : 64 - 94
  • [16] From Missing Data Imputation to Data Generation
    Neves, Diogo Telmo
    Alves, Joao
    Naik, Marcel Ganesh
    Proenca, Alberto Jose
    Prasser, Fabian
    JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 61
  • [17] Data variability in the imputation quality of missing data
    Stochero, Elisandra Lucia Moro
    Lucio, Alessandro Dal'Col
    Jacobi, Luciane Flores
    ACTA SCIENTIARUM-AGRONOMY, 2024, 46
  • [18] Influence of Data Distribution in Missing Data Imputation
    Santos, Miriam Seoane
    Soares, Jastin Pompeu
    Abreu, Pedro Henriques
    Araujo, Helder
    Santos, Joao
    ARTIFICIAL INTELLIGENCE IN MEDICINE, AIME 2017, 2017, 10259 : 285 - 294
  • [19] Multiple Imputation For Missing Ordinal Data
    Chen, Ling
    Toma-Drane, Mariana
    Valois, Robert F.
    Drane, J. Wanzer
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2005, 4 (01) : 288 - 299
  • [20] A Probabilistic Approach for Missing Data Imputation
    Arefin, Muhammed Nazmul
    Masum, Abdul Kadar Muhammad
    COMPLEXITY, 2024, 2024