Principal bundles with holomorphic connections over a Kähler Calabi-Yau manifold

被引:0
|
作者
Biswas, Indranil [1 ]
Dumitrescu, Sorin [2 ]
机构
[1] Shiv Nadar Univ, Dept Math, NH91,Tehsil Dadri, Greater Noida 201314, Uttar Pradesh, India
[2] Univ Cote Azur, CNRS, LJAD, Nice, France
关键词
Calabi-Yau manifold; Atiyah bundle; Holomorphic connection; Pseudostability;
D O I
10.1016/j.difgeo.2023.102093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that any holomorphic vector bundle admitting a holomorphic connection, over a compact Kahler Calabi-Yau manifold, also admits a flat holomorphic connection. This addresses a particular case of a question asked by Atiyah and generalizes a result previously obtained in [6] for simply connected compact Kahler Calabi-Yau manifolds. We give some applications of it in the framework of Cartan geometries and foliated Cartan geometries on Kahler Calabi-Yau manifolds.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] SEMISTABLE HIGGS BUNDLES ON CALABI-YAU MANIFOLDS
    Bruzzo, U.
    Lanza, V
    Lo Giudice, A.
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (06) : 905 - 918
  • [22] Stable Vector Bundles on Calabi-Yau Threefolds
    Andreas, Bjoern
    Hernandez Ruiperez, Daniel
    Sanchez Gomez, Dario
    SPECIAL METRICS AND SUPERSYMMETRY, 2009, 1093 : 19 - +
  • [23] Bounding the heat trace of a Calabi-Yau manifold
    Marc-Antoine Fiset
    Johannes Walcher
    Journal of High Energy Physics, 2015
  • [24] M-theory on a Calabi-Yau manifold
    Ferrara, S
    Khuri, RR
    Minasian, R
    PHYSICS LETTERS B, 1996, 375 (1-4) : 81 - 88
  • [25] Holomorphic principal bundles over a compact Kahler manifold
    Anchouche, B
    Azad, H
    Biswas, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02): : 109 - 114
  • [26] Rigidity of surjective holomorphic maps to Calabi-Yau manifolds
    Jun-Muk Hwang
    Mathematische Zeitschrift, 2005, 249 : 767 - 772
  • [27] Rigidity of subjective holomorphic maps to Calabi-Yau manifolds
    Hwang, JM
    MATHEMATISCHE ZEITSCHRIFT, 2005, 249 (04) : 767 - 772
  • [28] Numerical Calabi-Yau metrics from holomorphic networks
    Douglas, Michael R.
    Lakshminarasimhan, Subramanian
    Qi, Yidi
    MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145, 2021, 145 : 223 - +
  • [29] The parabolic quaternionic Calabi-Yau equation on hyperkähler manifolds
    Bedulli, Lucio
    Gentili, Giovanni
    Vezzoni, Luigi
    REVISTA MATEMATICA IBEROAMERICANA, 2024, 40 (06) : 2291 - 2310
  • [30] Branched Holomorphic Cartan Geometries and Calabi-Yau Manifolds
    Biswas, Indranil
    Dumitrescu, Sorin
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2019, 2019 (23) : 7428 - 7458