Pseudo Inputs Optimisation for Efficient Gaussian Process Distance Fields

被引:1
|
作者
Wu, Lan [1 ]
Le Gentil, Cedric [1 ]
Vidal-Calleja, Teresa [1 ]
机构
[1] Univ Technol Sydney, Robot Inst, Fac Engn & IT, Ultimo, NSW 2007, Australia
基金
澳大利亚研究理事会;
关键词
Gaussian Process; Euclidean Distance Fields; Mapping;
D O I
10.1109/IROS55552.2023.10342483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Robots reason about the environment through dedicated representations. Despite the fact that Gaussian Process (GP)-based representations are appealing due to their probabilistic and continuous nature, the cubic computational complexity is a concern. In this paper, we present a novel efficient GP-based representation that has the ability to produce accurate distance fields and is parameterised by the optimal locations of pseudo inputs. When applying the proposed method together with a kernel approximation approach, we show it outperforms well-established sparse GP frameworks in efficiency and accuracy. Moreover, we extend the proposed method to work in a dynamic setting, where a map is built iteratively and the scene dynamics are accounted for by adding or removing objects from the environment representation. In a nutshell, our method provides the ability to infer dynamic distance fields and achieve state-of-the-art reconstruction efficiently.
引用
收藏
页码:7249 / 7255
页数:7
相关论文
共 50 条
  • [41] SUPPLY CHAIN ANALYSIS USING SIMULATION, GAUSSIAN PROCESS MODELLING AND OPTIMISATION
    Smew, W.
    Young, P.
    Geraghty, J.
    INTERNATIONAL JOURNAL OF SIMULATION MODELLING, 2013, 12 (03) : 178 - 189
  • [42] Efficient Optimization for Sparse Gaussian Process Regression
    Cao, Yanshuai
    Brubaker, Marcus A.
    Fleet, David J.
    Hertzmann, Aaron
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (12) : 2415 - 2427
  • [43] Chebyshev Polynomials for Efficient Gaussian Process Computation
    Dudek, Adrian
    Baranowski, Jerzy
    2023 27TH INTERNATIONAL CONFERENCE ON METHODS AND MODELS IN AUTOMATION AND ROBOTICS, MMAR, 2023, : 240 - 245
  • [44] Efficient Gaussian process regression for large datasets
    Banerjee, Anjishnu
    Dunson, David B.
    Tokdar, Surya T.
    BIOMETRIKA, 2013, 100 (01) : 75 - 89
  • [45] Energy Efficient Heat Treatment Process Design and Optimisation
    Mendikoa, Inigo
    Sorli, Mikel
    Armijo, Alberto
    Garcia, Laura
    Erausquin, Luis
    Insunza, Mario
    Bilbao, Jon
    Friden, Hakan
    Bjoerk, Anders
    Bergfors, Linus
    Skema, Romualdas
    Alzbutas, Robertas
    Iesmantas, Tomas
    ADVANCES IN MATERIALS PROCESSING TECHNOLOGIES-MESIC V, 2014, 797 : 139 - +
  • [46] Heat Treatment Process Energy Efficient Design and Optimisation
    Mendikoa, I.
    Sorli, M.
    Armijo, A.
    Garcia, L.
    Erausquin, L.
    Insunza, M.
    Bilbao, J.
    Friden, H.
    Bjork, A.
    Bergfors, L.
    Skema, R.
    Alzbutas, R.
    Iesmantas, T.
    MANUFACTURING ENGINEERING SOCIETY INTERNATIONAL CONFERENCE, (MESIC 2013), 2013, 63 : 303 - 309
  • [47] A novel efficient optimisation system for purification process synthesis
    Polykarpou, Eleftheria M.
    Dalby, Paul A.
    Papageorgiou, Lazaros G.
    BIOCHEMICAL ENGINEERING JOURNAL, 2012, 67 : 186 - 193
  • [48] Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
    Gal, Yarin
    Turner, Richard
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 655 - 664
  • [49] EFFICIENT ARITHMETIC IN (PSEUDO-)MERSENNE PRIME ORDER FIELDS
    Nath, Kaushik
    Sarkar, Palash
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2022, 16 (02) : 303 - 348
  • [50] Online Distance Field Priors for Gaussian Process Implicit Surfaces
    Ivan, Jean-Paul A.
    Sloyanov, Todor
    Stork, Johannes A.
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04) : 8996 - 9003