trRosettaRNA: automated prediction of RNA 3D structure with transformer network

被引:25
|
作者
Wang, Wenkai [1 ]
Feng, Chenjie [2 ,3 ]
Han, Renmin [2 ]
Wang, Ziyi [2 ]
Ye, Lisha [1 ]
Du, Zongyang [1 ]
Wei, Hong [1 ]
Zhang, Fa [4 ]
Peng, Zhenling [2 ]
Yang, Jianyi [2 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Shandong Univ, MOE Frontiers Sci Ctr Nonlinear Expectat, Res Ctr Math & Interdisciplinary Sci, Qingdao 266237, Peoples R China
[3] Ningxia Med Univ, Sch Sci, Yinchuan 750004, Peoples R China
[4] Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
DIRECT-COUPLING ANALYSIS; PUZZLES; PROTEIN; ACCURACY;
D O I
10.1038/s41467-023-42528-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA 3D structure prediction is a long-standing challenge. Inspired by the recent breakthrough in protein structure prediction, we developed trRosettaRNA, an automated deep learning-based approach to RNA 3D structure prediction. The trRosettaRNA pipeline comprises two major steps: 1D and 2D geometries prediction by a transformer network; and 3D structure folding by energy minimization. Benchmark tests suggest that trRosettaRNA outperforms traditional automated methods. In the blind tests of the 15th Critical Assessment of Structure Prediction (CASP15) and the RNA-Puzzles experiments, the automated trRosettaRNA predictions for the natural RNAs are competitive with the top human predictions. trRosettaRNA also outperforms other deep learning-based methods in CASP15 when measured by the Z-score of the Root-Mean-Square Deviation. Nevertheless, it remains challenging to predict accurate structures for synthetic RNAs with an automated approach. We hope this work could be a good start toward solving the hard problem of RNA structure prediction with deep learning. Here, authors develop trRosettaRNA, a deep learning-based approach for predicting RNA 3D structures. Blind tests demonstrate that the automated predictions compete effectively with top human predictions on natural RNAs.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme
    Miao, Zhichao
    Adamiak, Ryszard W.
    Antczak, Maciej
    Batey, Robert T.
    Becka, Alexander J.
    Biesiada, Marcin
    Boniecki, Michat J.
    Bujnicki, Janusz M.
    Chen, Shi-Jie
    Cheng, Clarence Yu
    Chou, Fang-Chieh
    Ferre-D'Amare, Adrian R.
    Das, Rhiju
    Dawson, Wayne K.
    Ding, Feng
    Dokholyan, Nikolay V.
    Dunin-Horkawicz, Stanistaw
    Geniesse, Caleb
    Kappel, Kalli
    Kladwang, Wipapat
    Krokhotin, Andrey
    Lach, Grzegorz E.
    Major, Francois
    Mann, Thomas H.
    Magnus, Marcin
    Pachulska-Wieczorek, Katarzyna
    Patel, Dinshaw J.
    Piccirilli, Joseph A.
    Popenda, Mariusz
    Purzycka, Katarzyna J.
    Ren, Aiming
    Rice, Greggory M.
    Santalucia, John, Jr.
    Sarzynska, Joanna
    Szachniuk, Marta
    Tandon, Arpit
    Trausch, Jeremiah J.
    Tian, Siqi
    Wang, Jian
    Weeks, Kevin M.
    Williams, Benfeard, II
    Xiao, Yi
    Xu, Xiaojun
    Zhang, Dong
    Zok, Tomasz
    Westhof, Eric
    [J]. RNA, 2017, 23 (05) : 655 - 672
  • [32] RNA-MoIP: prediction of RNA secondary structure and local 3D motifs from sequence data
    Yao, Jason
    Reinharz, Vladimir
    Major, Francois
    Waldispuhl, Jerome
    [J]. NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) : W440 - W444
  • [33] SEFormer: Structure Embedding Transformer for 3D Object Detection
    Feng, Xiaoyu
    Du, Heming
    Fan, Hehe
    Duan, Yueqi
    Liu, Yongpan
    [J]. THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 1, 2023, : 632 - 640
  • [34] Automated 3D structure composition for large RNAs
    Popenda, Mariusz
    Szachniuk, Marta
    Antczak, Maciej
    Purzycka, Katarzyna J.
    Lukasiak, Piotr
    Bartol, Natalia
    Blazewicz, Jacek
    Adamiak, Ryszard W.
    [J]. NUCLEIC ACIDS RESEARCH, 2012, 40 (14)
  • [35] A Spatio-temporal Transformer for 3D Human Motion Prediction
    Aksan, Emre
    Kaufmann, Manuel
    Cao, Peng
    Hilliges, Otmar
    [J]. 2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 565 - 574
  • [36] Towards Efficient 3D Human Motion Prediction using Deformable Transformer-based Adversarial Network
    Yu Hua
    Fan Xuanzhe
    Hou Yaqing
    Liu Yi
    Kang Cai
    Zhou Dongsheng
    Zhang Qiang
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022,
  • [37] Spatiotemporal Transformer Attention Network for 3D Voxel Level Joint Segmentation and Motion Prediction in Point Cloud
    Wei, Zhensong
    Qi, Xuewei
    Bai, Zhengwei
    Wu, Guoyuan
    Nayak, Saswat
    Hao, Peng
    Barth, Matthew
    Liu, Yongkang
    Oguchi, Kentaro
    [J]. 2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1381 - 1386
  • [38] An Automated Approach for Fibrin Network Segmentation and Structure Identification in 3D Confocal Microscopy Images
    Chen, Jianxu
    Kim, Oleg V.
    Litvinov, Rustem I.
    Weisel, John W.
    Alber, Mark S.
    Chen, Danny Z.
    [J]. 2014 IEEE 27TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2014, : 173 - 178
  • [39] SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction
    Boniecki, Michal J.
    Lach, Grzegorz
    Dawson, Wayne K.
    Tomala, Konrad
    Lukasz, Pawel
    Soltysinski, Tomasz
    Rother, Kristian M.
    Bujnicki, Janusz M.
    [J]. NUCLEIC ACIDS RESEARCH, 2016, 44 (07)
  • [40] RNA 3D Structure Prediction by Using a Coarse-Grained Model and Experimental Data
    Xia, Zhen
    Bell, David R.
    Shi, Yue
    Ren, Pengyu
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2013, 117 (11): : 3135 - 3144